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Steps in constructing finite-volume method

∂Qj

∂t
+

G(Q+
j+1/2,Q

−
j+1/2)− G(Q+

j−1/2,Q
−
j−1/2)

∆x
= 0

To completely specify a finite-volume scheme we must design algorithms for each of the
following three steps:

• Step 1: A recovery scheme (possibly with limiters) to compute the left/right
interface values Q± at each interface using a set of cell-average values around that
interface,

• Step 2: A numerical flux function that takes the left/right values and returns a
consistent approximation to the physical flux, and

• Step 3: A time-stepping scheme to advance the solution in time and compute
the cell-averages at the next time-step.
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Essence of the finite-volume method

Instead of computing one edge value we will
compute two values: one the left and one on right
of cell-edge. We will next define a numerical flux
function

G = G(Q−j+1/2,Q+
j+1/2)

with consistency condition

lim
QL,R→Q

G(QL,QR) = F(Q)
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In terms of the numerical flux function the FV update formula becomes

∂Qj

∂t
+

G(Q+
j+1/2,Q−j+1/2)− G(Q+

j−1/2,Q−j−1/2)

∆x
= 0
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Numerical Flux Function

The numerical flux function computes a consistent flux at the cell-edge from the cell averages.

lim
QL,R→Q

G(QL,QR) = F(Q).

Examples

• Central Flux in which we simply average the flux from the two states at the interface

G(QL,QR) =
1

2
(F(QL) + F(QR)) .

• Upwind Flux in which we choose the edge on the “upwind” side to account for direction of
information flow:

G(QL,QR) = F(QL)

if information is flowing from left-to-right, and

G(QL,QR) = F(QR)

if information is flowing from right-to-left. Begs the question: how to determine which direction
information is flowing in? Answer: the eigensystem of the hyperbolic equation contains this!
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Numerical Flux Function: Lax flux

• A good choice of the numerical flux function is the local Lax flux:

G(QL,QR) =
1

2
(F(QL) + F(QR))− |λ|

2
(QR −QL)

where |λ| is an estimate of the (absolute) maximum of all eigenvalues at the interface.

• For advection equation this becomes

G (fL, fR) =
1

2
a(fL + fR)− |a|

2
(fR − fL)

This works for either sign of advection speed a, automatically giving upwinding.

• Note |λ| is only a local (to the interface) estimate. You can use a global estimate too:
orginal formulation by Peter Lax (“Lax fluxes”).

5 / 19 https://ast560.rtfd.io



Numerical Flux Function: Systems of equations

• Lax flux is a good “first” flux to use. However, notice it only takes into account a single
piece of information: maximum eigenvalue.

• For a linear system of equations (Maxwell equation) or locally linearized nonlinear system
we can instead do

G (QR ,QL) =
1

2

(
F (QR) + F (QL)

)
− 1

2
(A+∆QR,L − A−∆QR,L)

where the fluctuations A±∆Q are defined as

A±∆QR,L ≡
∑
p

rpλ±p (wp
R − wp

L ) =
∑
p

rpλ±p l
p(QR − QL).

where λ+
p = max(λp, 0) and λ−p = min(λp, 0).

• Additional care is needed for nonlinear equations like Euler or ideal MHD equations. More
on this on Thursday.
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Some notation for use in recovery stencils

Example: symmetric recovery across two cells can be written as

Qi+1/2 =
1

2
(Qi+1 + Qj) =

1

2
(dp + dm)Qi+1/2

Example: central difference scheme for second derivative:

∂2Qi

∂x2
=

1

∆x2
(Qi+1 − 2Qj + Qi−1) =

1

∆x2
(∆p − 2I + ∆m)Qi

Figure: Basic indexing operators to move from cell to cell, face to cell and cell to face.
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Recovery scheme: four-cell stencil, centered scheme

• To construct a four-cell symmetric stencil recovery across an interface we will use a four-cell
stencil: {d2m, dm, dp, d2p}

• Setup a local coordinate system with x = 0 at the interface and assume a polynomial recovery

p(x) = p0 + p1x + p2x
2 + p3x

3

• Match the cell-averages of p(x) in each of the cells {d2m, dm, dp, d2p} to get a system of linear
equations. Solve this system to determine p0, p1, p2, p3.
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Recovery scheme: four-cell stencil, centered scheme

Solving the system of four equations for the four coefficients pi , i = 0, . . . , 3 yields:

p0 =
1

12
(−d2m + 7dm + 7dp − d2p)Q

p1 =
1

12∆x
(d2m − 15dm + 15dp − d2p)Q

p2 =
1

4∆x2
(d2m − dm − dp + d2p)Q

p4 =
1

6∆x3
(d2m − 3dm + 3dp − d2p)Q.

• Notice: stencils of the even coefficients are symmetric and the odd coefficients are
anti-symmetric.

• To compute the interface value we do not really need all of these coefficients but
only need to evaluate the recovery polynomial at x = 0, i.e we only need p(0) = p0
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Recovery scheme: four-cell stencil, centered scheme

To compute the interface value we do not really need all of these coefficients but only need to
evaluate the recovery polynomial at x = 0, i.e we only need p(0) = p0. Hence, the interface
value can be computed from

Q+ = Q− =
1

12
(−d2m + 7dm + 7dp − d2p)Q.

Note that due the symmetric nature of the stencil we have only a single value at the interface.
This means that the numerical flux function at an interface is simply

G (Q,Q) = F (Q)

from consistency requirements.This completes the spatial finite-volume discretization! The
scheme one gets from this is very accurate (even “structure preserving” for Maxwell equations),
though not very robust in presence of sharp gradients. (No Free Lunch)
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How accurate is any given scheme?

To fix ideas consider we wish to solve the advection equation

∂f

∂t
+
∂f

∂x
= 0

Using the four-cell symmetric recovery scheme to compute interface values in the FV
update formula we get the semi-discrete scheme five-cell stencil update formula:

∂fj
∂t

= − 1

∆x

∫ xj+1//2

xj−1/2

∂f

∂x
dx = − 1

12∆x
(fj−2 − 8fj−1 + 8fj+1 − fj+2)

How accurate is this scheme, or what is its order of convergence?
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How accurate is any given scheme? Use Taylor series

• Take a Taylor series polynomial around the cell center of cell Ij = [−∆x/2,∆x/2] locally at x = 0

T (x) =
∑
n=0

Tn

n!
xn.

• Compute the cell average of this polynomial in each of the stencil cells {∆2m,∆m,∆p,∆2p}
• Substitute these averages in the update formula to compute the mean value of the flux gradient in

the cell Ij = [−∆x/2,∆x/2]

1

12∆x
(∆2m − 8∆m + 8∆p −∆2p)T = T1 +

∆x2

24
T3 −

21∆x4

640
T5 + . . .

• Subtract the exact cell average of the gradient of the Taylor polynomial in cell
Ij = [−∆x/2,∆x/2], i.e.

1

∆x

∫ ∆x/2

−∆x/2

∂T

∂x
dx = T1 +

∆x2

24
T3 +

∆x4

1920
T5 + . . .

from the stencil computed value. The remainder term is the error of the scheme.
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Symmetric four-cell recovery scheme is fourth-order accurate

The above procedure (needs use of a compute algebra system to simplify the
computations) shows that the symmetric four-cell recovery scheme has error that goes
like

∆x4

30
T5 + O(∆x6)

showing the scheme converges with fourth-order accuracy O(∆x4) for linear advection
equation. (Reducing ∆x by 2 reduces error by a factor of 16).
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Accuracy is not everything: dispersion and diffusion

• High-order symmetric schemes like the one we derived are very accurate (even “structure
preserving” for some problems) but not robust.

• Two other properties of the scheme are important to understand: dispersion and diffusion. For this
we wil derive a numerical dispersion relation analogous to dispersion relation we derived for
linearized systems.

• Consider a single mode f (x) = e ikx where k is the wavenumber. Compute the cell-average of the
mode on each of the cells in the stencil, plug into the stencil formula to derive the numerical
dispersion relation

ik∆x =
M∑

m=−N

cme
imk∆x

where we have written the stencil in the generic form

1

∆x

M∑
m=−N

cmfj+m
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Symmetric four-cell recovery scheme has no diffusion!

• Note that the numerical dispersion relation will in
general give a complex effective wavenumber k .

• The dispersion relation for a hyperbolic equation is
ω = λk. Hence, the real part of k represents
dispersion and imaginary part of k represents
diffusion/growth. Obviously, we want imaginary part
to be negative to avoid solution blow-up!

• The four-cell symmetric stencil has no imaginary part
of k. This related to the fact that it is symmetric
(anti-symmetric stencil coefficients). This is not
necessarily a good thing!

Figure: Real-part of numerical
dispersion relation for four-cell
recovery scheme. Notice the strong
dispersion for higher-k modes
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Closer look at numerical dispersion relation

The numerical dispersion relation determines the wave-vector that the time-propagator
of the scheme sees. Consider:

ik = ik(k) =
M∑

m=−N

cme
ikm∆x

If we are solving a linear advection equation with a single mode solution like e−iωk te ikx ,
where ωk = λk then the effective mode in the discrete scheme will be

ωk = λk(k).

Hence, the numerical scheme adds numerical dispersion to propagating waves as now
the phase- and group-velocity are no longer constant.

16 / 19 https://ast560.rtfd.io



Godunov’s Theorem

• A very important theorem proved by Godunov is that there is no linear scheme that is
“monotonicity preserving” (no new maxima/minima created) and higher than first-order
accurate!

• Consider a general scheme for advection equation

f n+1
j =

∑
k

ck f
n
j+k .

The discrete slope then is

f n+1
j+1 − f n+1

j =
∑
k

ck
(
f nj+k+1 − f nj+k

)
.

Assume that all f nj+1 − f nj > 0. To maintain monotonicity at next time-step hence one must
have all ck ≥ 0.
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Godunov’s Theorem

• First order upwind scheme:

f n+1
j = f nj −

∆t

∆x
(f nj − f nj−1)

this satisfies monotonicity as long as ∆t/∆x ≤ 1.

• Second order symmetric scheme

f n+1
j = f nj −

∆t

2∆x
(f nj+1 − f nj−1)

clearly this does not satisfy the condition of monotonicity.

• In general condition on Taylor series to ensure atleast second-order accuracy shows that at
least one of the cks must be negative. Hence, by contradiction, no such scheme exists!
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Godunov’s Theorem: Unfortunate Consequences and Workarounds

• Godunov’s Theorem is highly distressing: accurate discretization seems to preclude a
scheme free from monotonicity violations

• One way around is to start with a linear scheme that is very accurate and then add some
local diffusion to it to control the monotonicity.

• However, Godunov’s theorem shows that this “diffusion” must be dependent on the local
solution itself and can’t be fixed a priori. This means a monotonicity preserving scheme
must be nonlinear, even for linear hyperbolic equations.

• Leads to the concept of nonlinear limiters that control the monotonicity violations (adding
diffusion to high-k modes). No free lunch: limiters must diffuse high-k modes but this will
inevitably lead to issues like inability to capture, for example, high-k turbulence spectra
correctly without huge grids.

• Major research project: interaction of shocks, boundary layers and turbulence in
high-Reynolds number flows.

19 / 19 https://ast560.rtfd.io


