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Hyperbolic PDEs: rigorous definition, no reliance on linearization

Consider a system of conservation laws written as

∂Q

∂t
+
∂F

∂x
= 0.

where Q is a vector of conserved quantities and F(Q) is a vector of fluxes. This system
is called hyperbolic if the flux Jacobian

A ≡ ∂F

∂Q

has real eigenvalues and a complete set of linearly independent eigenvectors. In
multiple dimensions if Fi are fluxes in direction i then we need to show that arbitrary
linear combinations

∑
i ni∂Fi/∂Q have real eigenvalues and linearly independent set of

eigenvectors.
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The Riemann Problem for hyperbolic PDEs

The Riemann problem is a class of initial value problems for a hyperbolic PDE

∂Q

∂t
+
∂F

∂x
= 0.

on x ∈ [−∞,∞] with initial conditions

Q(x , 0) = QR x > 0

Q(x , 0) = QL x < 0

where QL,R are constant initial states.

• Fundamental mathematical problem in theory of hyperbolic PDEs: brings out the key
structure of the nonlinear solutions of the system.

• For some important systems like (relativisitic) Euler equations, ideal MHD the Riemann
problem can be solved exactly (modulo some nonlinear root-finding).

• Good test for shock-capturing schemes as it tests ability to capture discontinuities and
complex non-linear phenomena.
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Weak-solutions and entropy conditions

At a shock the solution has a discontinuity. Hence, derivatives are not defined! Differential form of the
equations break-down. We must use concept of weak-solutions in this case.

Let φ(x , t) is a compactly supported (i.e. zero outside some bounded region) smooth function (enough
continuous derivatives). Then multiply conservation law∫ ∞

0

∫ ∞
−∞

φ(x , t)

[
∂Q

∂t
+
∂F

∂x

]
dx dt = 0

by φ(x , t) and integrating by parts to get the weak-form∫ ∞
0

∫ ∞
−∞

[
∂φ

∂t
Q +

∂φ

∂x
F

]
dx dt = −

∫ ∞
−∞

φ(x , 0)Q(x , 0)dx .

Definition (Weak-solution)

A function Q(x , t) is said to be a weak-solution if it satisfies the weak-form for all compact, smooth
φ(x , t).
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Weak-solutions and entropy conditions

Unfortunately, weak-solutions are not unique! Why does this happen?

In physical problems there is always some non-ideal effects (viscosity, Landau damping
etc) that does not allow a genuine discontinuity to form. However, this “viscous shock
layer” can be extremely thin compared to system size. Also, we know entropy must
increase in the physical universe.

This indicates we can recover uniqueness in two ways

• Add a viscous (diffusion) term and take limit of viscosity going to zero. (Generally
not convenient for numerical work)

• Impose entropy condition: construct an entropy function such that it remains
conserved for smooth solutions but increases across a shock. Entropy is naturally
suggested in most physical problems.
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Weak-solutions of Burgers’ equation: shock

When characteristics converge a shock will form3.5 The Riemann Problem 
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Figure 3.8. Shock wave. 

with piecewise constant initial data 

U(x,O) = { 
U/ 

Ur 

x<O 
x> O. 

The form of the solution depends on the relation between u/ and u r • 

Case I. u/ > u r . 

In this case there is a unique weak solution, 

where 

u(x, t) = { 
U/ 

Ur 

x < st 
x> st 

s = (u/ + ur )/2 

29 

x = st 

(3.24) 

(3.25) 

(3.26) 

is the shock speed, the speed at which the discontinuity travels. A general expression 
for the shock speed will be derived below. Note that characteristics in each of the regions 
where U is constant go into the shock (see Fig. 3.8) as time advances. 

EXERCISE 3.4. Verify that (3.25) is a weak solution to Burgers' equation by showing 
that (3.22) is satisfied for all <P E q. 

EXERCISE 3.5 . Show that the viscous equation (3.15) has a travelling wave solution 
of the form u«x, t) = w(x - st) by deriving an ODE for wand verifying that this ODE 
has solutions of the form 

1 
w(y) = U r + 2(u/ - ur ) [1 - tanh((u/ - ur )y/4�)] (3.27) 

with s again given by (3. 26}. Note that w(y) -+ u/ as Y -+ -00 and w(y) -+ U r as 
y -+ +00. Sketch this solution and indicate how it varies as Ä -+ O. 

The smooth solution u«x, t) found in Exercise 3.5 converges to the shock solution 
(3.25) as Ä -+ 0, showing that our shock solution is the desired vanishing viscosity solution. 
The shape of u« x, t) is often called the "viscous profile" for the shock wave. 
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Shock-speed is given by the Rankine-Hugoniot jump condition

Consider a discontinuity in the solution wirh left/right states QL and QR . Then the speed at
which this discontinuity moves, s, is called the shock-speed and is determined by the
Rankine-Hugoniot jump condition

s(QR −QL) = FR − FL

For Burgers’s equation we simply have

s =
1

2
(uL + uR).

For linear systems of hyperbolic equations as F = AQ we have

s(QR −QL) = A(QR −QL)

which means the eigenvalues of A are the shock-speeds.

For general nonlinear hyperbolic systems only very specific jumps in which the jump in flux and
jump in conserved variables are linearly dependent can be shocks.
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Weak-solutions of Burgers’ equation: rarefaction

When characteristics diverge inifinite solutions to the weak-form! An entropy respecting
solution is a rarefaction

30 3 Scalar Conservation Laws 

[ ,····· Ur 
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o 

Case II. U/ < u r . 

\ 
o 

Figure 3.9. Entropy-violating shock. 

o 
Figure 3.10. Rarefaction wave. 

x = st 

In this case there are infinitely many weak solutions. One of these is again (3.25), 
(3.26) in which the discontinuity propagates with speed s . Note that characteristics now 
go out of the shock (Fig. 3.9) and that this solution is not stable to perturbations. If the 
data is smeared out slightly, or if a small amount of viscosity is added to the equation, 
the solution changes completely. 

Another weak solution is the rarefaction wave 

{ 
u/ x < u/t 

u(x, t) = xlt u/t ú =x ú =urt 
U r x> urt 

(3.28) 

This solution is stable to perturbations and is in fact the vanishing viscosity generalized 
solution (Fig. 3.10). 

EXERCISE 3.6. There are infinitely many other weak solutions to (3.14) when u/ < ur. 

Show, for example, that 

{ 

u/ 

Um 
u(x, t) = xlt 

U r 

x < smt 
smt ú =x ú =umt 
umt ú =x ú =urt 
x> urt 

One possible defintion of entropy respecting shocks for Burgers’ equation: only allow a
discontinuity if uL > uR . So in the above case me must not allow a shock to form.
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Weak-solutions: shock and rarefaction

When characteristics diverge (right plot below) the weak-solution is not unique. A false
“shock” solution also is a weak-solution. Imposing entropy condition gives a rarefaction wave
seen in the right plot.
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Euler equations of invicid fluids

The Euler equations for invicid fluids are important in themselves, and form the basis of many
other more complex equation systems (Navier-Stokes, multi-fluid plasma equations, MHD, ...)

∂ρ

∂t
+∇ · (ρu) = 0 Continuity

∂(ρu)

∂t
+∇ · (ρuu + pI) = 0 Momentum

∂E
∂t

+∇ · [(E + p)u] = 0 Energy

where

E =
p

γ − 1︸ ︷︷ ︸
IE

+
1

2
ρu2︸ ︷︷ ︸
KE

.

is the total energy of the system. If we solve the system in this conservative form, then density,
momentum and energy are conserved automatically, even locally.
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Euler equations: hyperbolicity

∂

∂t


ρ
ρu
ρv
ρw
E

 +
∂

∂x


ρu

ρu2 + p
ρuv
ρuw

(E + p)u

 = 0

Here E = p/(γ − 1) + ρu2/2 is the total energy. Eigenvalues of this system are
{u − cs , u, u, u, u + cs} where cs =

√
γp/rho is the sound speed. See class notes for

left/right eigenvectors.

Note: in the limit p → 0 all eigenvalues become u and for cold-fluid (p = 0) the system
does not possess complete set of eigenvectors. (Cold fluid model is important in
plasmas and to model dust, for example, in astrophysical systems or in say volcanic
explosions).
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Euler equations: transport of kinetic energy

The energy conservation equation for Euler equation is

∂E
∂t

+∇ · [(E + p)u] = 0

where

E =
p

γ − 1︸ ︷︷ ︸
IE

+
1

2
ρu2︸ ︷︷ ︸
KE

.

We can derive instead balance laws (not conservation laws) for transport of KE and IE

∂

∂t
(KE) +∇ · (KE u) = −u · ∇p

∂

∂t
(IE) +∇ · (IE γu) = u · ∇p

It is important to ensure that in the numerics exchange of kinetic and internal energy is only via the
RHS terms (pressure work).

Many shock-capturing and higher-order methods can mess this up for high-k (short wavelength) modes
due leading to incorrect energy spectra. (No Free Lunch Principle).

12 / 21 https://ast560.rtfd.io



Euler equations: shocks, rarefactions and contacts

In addition to shocks and rarefactions which we saw in Burgers’s equation, Euler
equations also support contact discontinuities, across which density has a jump but not
pressure or velocity.
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Beyond hyperbolic PDEs: Source terms, non-ideal effects

In most physics applications one must add source terms and non-ideal effects to the
underlying hyperbolic PDE, converting it into a PDE of mixed type. Typically we will
have systems of the form

∂Q

∂t
+
∂F

∂x
+
∂G

∂x
+ . . . = S

where G(Q, ∂Q/∂x) are viscous/non-ideal fluxes that depend on gradients of Q
(viscous stress-tensor in Navier-Stokes equations, heat-conducion etc) and S(Q, x , t)
are source terms.

The presence of non-ideal and source terms can significantly change the physics and
required numerics.
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Example: Ideal multifluid equations (five-moment)

Multi-fluid plasma equations are an important example. Ignoring non-ideal terms:

∂ρs
∂t

+∇ · (ρsus) = 0

∂

∂t
(ρsus) +∇ · (ρsusus + ps I) =

qsρs
ms

(E + us × B)

∂Es
∂t

+∇ · [(Es + ps)us ] =
qsρs
ms

us · E

for each plasma species s (electrons, ions, ...). These are coupled to Maxwell equations

∂B

∂t
+∇× E = 0

ε0µ0
∂E

∂t
−∇× B = −µ0

∑
s

qsρs
ms

us
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Multifluid equations (five-moment): conservation properties

Note that in multifluid system total momentum (fluid+field) and total energy
(fluid+field) is conserved. Hence, conservation properties are indirect: ensuring
conservation of total momentum and total energy (specially locally) is non-trivial.

∂

∂t

(∑
s

ρsus + ε0E× B

)
+∇ ·

[∑
s

(ρsusus + ps I) +

(
ε0
2
|E|2 +

1

2µ0
|B|2

)
I−
(
ε0EE +

1

µ0
BB

)]
= 0

∂

∂t

(∑
s

Es +
ε0
2
|E|2 +

1

2µ0
|B|2

)
+∇ ·

[∑
s

(Es + ps)us +
1

µ0
E× B

]
= 0.
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Multifluid equations (five-moment): eigensystem

The multifluid system is not hyperbolic!
However, it has a very complicated
eigenstructure (called “dispersion relations”
when studying linear plasma problems)

• The presence of the Lorentz force terms add
many new time-scales: plasma-frequency,
electron/ion cyclotron frequencies ...

• Adding non-ideal terms adds even more
scales: diffusion and viscous time-scales.

Understanding the frequencies in the system is
critical to determine stable time-steps for
explicit schemes. More on this later when we
discuss time-stepping.
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Essence of the finite-volume method

Consider a PDE of the form (non necessarily hyperbolic)

∂Q

∂t
+
∂F

∂x
= 0.

Now make a grid with cells Ij = [xj−1, xj+1/2] and ∆x = xj+1/2 − xj−1/2. The finite-volume
method usually evolves the cell-averages of the solution:

∂Qj

∂t
+

Fj+1/2 − Fj−1/2

∆x
= 0

where

Qj(t) ≡ 1

∆x

∫
Ij

Q(x , t) dx

are the cell-averages and

Fj±1/2 ≡ F(Qj±1/2)

are numerical fluxes at cell interfaces.
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Essence of the finite-volume method

The finite-volume method usually evolves the cell-averages of the solution:

∂Qj

∂t
+

Fj+1/2 − Fj−1/2

∆x
= 0

This equation is an exact evolution equation for the cell-averages.However, notice that

• We only know cell-averages Qj in each cell; we do not know the cell-edge values Qj±1/2

needed to compute the numerical flux Fj±1/2.

• The finite-volume method consists of determining these edge values and constructing a
numerical-flux so the cell-averages can be updated.

• Time-stepping can be done with a ODE solver (method-of-lines) or using a single-step
method (fully discrete scheme).
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Essence of the finite-volume method

Instead of computing one edge value we
will compute two values: one the left and
one on right of cell. With this, the
numerical-flux will then be

Fj+1/2 = Fj+1/2(Q−
j+1/2,Q

+
j+1/2)

We must impose the consistency condition:

Fj+1/2(Q,Q) = F(Q).

Uier

U i

Witz yU it'k

i-Yz itYz

i- t I it I
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Cell-averages v/s cell-center values

• Typically, finite-volume schemes evolve the cell-average values; finite-difference schemes
evolve cell-center (or nodal) values.

• For some low-order (first and some second-order) schemes the forms of the scheme may
look superficially the same. However, this is not true in general and one must very carefully
distinguish between cell-average and point-wise values. Otherwise incorrect schemes can
result that “look okay” but do not achieve full accuracy.

• What we evolve (cell-average, nodal values or in DG moments or interior node values) is
called the solution representation.

Remember Your Representation

When studying or designing numerical schemes never confuse one solution representation for
another.

21 / 21 https://ast560.rtfd.io


