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The Riemann Problem for hyperbolic PDEs

The Riemann problem is a class of initial value problems for a hyperbolic PDE

∂Q

∂t
+
∂F

∂x
= 0.

on x ∈ [−∞,∞] with initial conditions

Q(x , 0) = QR x > 0

Q(x , 0) = QL x < 0

where QL,R are constant initial states.

• Fundamental mathematical problem in theory of hyperbolic PDEs: brings out the key
structure of the nonlinear solutions of the system.

• For some important systems like (relativisitic) Euler equations, ideal MHD the Riemann
problem can be solved exactly (modulo some nonlinear root-finding).

• Good test for shock-capturing schemes as it tests ability to capture discontinuities and
complex non-linear phenomena.
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Essence of the finite-volume method

Consider a PDE of the form (non necessarily hyperbolic)

∂Q

∂t
+
∂F

∂x
= 0.

Now make a grid with cells Ij = [xj−1/2, xj+1/2] and ∆x = xj+1/2 − xj−1/2. The finite-volume
method usually evolves the cell-averages of the solution:

∂Qj

∂t
+

Fj+1/2 − Fj−1/2

∆x
= 0

where

Qj(t) ≡ 1

∆x

∫
Ij

Q(x , t) dx

are the cell-averages and

Fj±1/2 ≡ F(Qj±1/2)

are at cell interfaces.
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Essence of the finite-volume method

The finite-volume method usually evolves the cell-averages of the solution:

∂Qj

∂t
+

Fj+1/2 − Fj−1/2

∆x
= 0

This equation is an exact evolution equation for the cell-averages.However, notice that

• We only know cell-averages Qj in each cell; we do not know the cell-edge values Qj±1/2

needed to compute the flux Fj±1/2.

• The finite-volume method consists of determining these edge values and constructing a
numerical-flux so the cell-averages can be updated.

• Time-stepping can be done with a ODE solver (method-of-lines) or using a single-step
method (fully discrete scheme).
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Cell-averages v/s cell-center values

• Typically, finite-volume schemes evolve the cell-average values; finite-difference schemes
evolve nodal values.

• For some low-order (first and some second-order) schemes the forms of the scheme may
look superficially the same. However, this is not true in general and one must very carefully
distinguish between cell-average and point-wise values. Otherwise incorrect schemes can
result that “look okay” but do not achieve full accuracy.

• What we evolve (cell-average, nodal values or in DG moments or interior node values) is
called the solution representation.

Remember Your Representation

When studying or designing numerical schemes never confuse one solution representation for
another.
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Finite-Volume method computes mean of flux gradient

To derive the basic form of the scheme we did

1

∆x

∫
Ij

∂F

∂x
dx =

Fj+1/2 − Fj−1/2

∆x
.

• Notice that the left-hand side is the mean of the flux gradient in the cell Ij

• Hence, in effect, the FV scheme is computing the mean of the flux gradient and not
the flux gradient itself. This is then used to update cell-average of the solution.

• This is important to remember when computing source terms; making plots or
computing diagnostics. (Remember Your Representation!).
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Example: How to compute mean of product of values?

• Given cell-average values Qj and Vj how can you compute cell-average value (QV )j?

• Clearly, (QV )j is not the same as QjVj .

• In general, depending on the order of the scheme one has to recover Q(x) and V (x)
to sufficiently high order in a cell, multiply them and then compute the average of
the product. Potential complications when solutions are not smooth enough.

• Almost never done! However, it may be important when trying to extract delicate
information from simulations like turbulence spectra etc.
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Essence of the finite-volume method

Instead of computing one edge value we will
compute two values: one the left and one on right
of cell-edge. We will next define a numerical flux
function

G = G(Q−j+1/2,Q+
j+1/2)

with consistency condition

lim
QL,R→Q

G(QL,QR) = F(Q)
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In terms of the numerical flux function the FV update formula becomes

∂Qj

∂t
+

G(Q+
j+1/2,Q−j+1/2)− G(Q+

j−1/2,Q−j−1/2)

∆x
= 0

8 / 18 https://ast560.rtfd.io



Steps in constructing finite-volume method

∂Qj

∂t
+

G(Q+
j+1/2,Q

−
j+1/2)− G(Q+

j−1/2,Q
−
j−1/2)

∆x
= 0

Hence, to completely specify a finite-volume scheme we must design algorithms for
each of the following three steps:

• Step 1: A recovery scheme (possibly with limiters) to compute the left/right
interface values Q± at each interface using a set of cell-average values around that
interface,

• Step 2: A numerical flux function that takes the left/right values and returns a
consistent approximation to the physical flux, and

• Step 3: A time-stepping scheme to advance the solution in time and compute
the cell-averages at the next time-step.
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Some notation for use in recovery stencils

Example: symmetric recovery across two cells can be written as

Qi+1/2 =
1

2
(Qi+1 + Qj) =

1

2
(dp + dm)Qi+1/2

Example: central difference scheme for second derivative:

∂2Qi

∂x2
=

1

∆x2
(Qi+1 − 2Qj + Qi−1) =

1

∆x2
(∆p − 2I + ∆m)Qi

Figure: Basic indexing operators to move from cell to cell, face to cell and cell to face.
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Recovery scheme: four-cell stencil, centered scheme

• To construct a four-cell symmetric stencil recovery across an interface we will use a four-cell
stencil: {d2m, dm, dp, d2p}

• Setup a local coordinate system with x = 0 at the interface and assume a polynomial recovery

p(x) = p0 + p1x + p2x
2 + p3x

3

• Match the cell-averages of p(x) in each of the cells {d2m, dm, dp, d2p} to get a system of linear
equations. Solve this system to determine p0, p1, p2, p3.
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Recovery scheme: four-cell stencil, centered scheme

Solving the system of four equations for the four coefficients pi , i = 0, . . . , 3 yields:

p0 =
1

12
(−d2m + 7dm + 7dp − d2p)Q

p1 =
1

12∆x
(d2m − 15dm + 15dp − d2p)Q

p2 =
1

4∆x2
(d2m − dm − dp + d2p)Q

p4 =
1

6∆x3
(d2m − 3dm + 3dp − d2p)Q.

• Notice: stencils of the even coefficients are symmetric and the odd coefficients are
anti-symmetric.

• To compute the interface value we do not really need all of these coefficients but
only need to evaluate the recovery polynomial at x = 0, i.e we only need p(0) = p0
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Recovery scheme: four-cell stencil, centered scheme

To compute the interface value we do not really need all of these coefficients but only need to
evaluate the recovery polynomial at x = 0, i.e we only need p(0) = p0. Hence, the interface
value can be computed from

Q+ = Q− =
1

12
(−d2m + 7dm + 7dp − d2p)Q.

Note that due the symmetric nature of the stencil we have only a single value at the interface.
This means that the numerical flux function at an interface is simply

G (Q,Q) = F (Q)

from consistency requirements.This completes the spatial finite-volume discretization! The
scheme one gets from this is very accurate (even “structure preserving” for Maxwell equations),
though not very robust in presence of sharp gradients. (No Free Lunch)
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How accurate is any given scheme?

To fix ideas consider we wish to solve the advection equation

∂f

∂t
+
∂f

∂x
= 0

Using the four-cell symmetric recovery scheme to compute interface values in the FV
update formula we get the semi-discrete scheme five-cell stencil update formula:

∂fj
∂t

= − 1

∆x

∫ xj+1//2

xj−1/2

∂f

∂x
dx = − 1

12∆x
(fj−2 − 8fj−1 + 8fj+1 − fj+2)

How accurate is this scheme, or what is its order of convergence?
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How accurate is any given scheme? Use Taylor series

• Take a Taylor series polynomial around the cell center of cell Ij = [−∆x/2,∆x/2] locally at x = 0

T (x) =
∑
n=0

Tn

n!
xn.

• Compute the cell average of this polynomial in each of the stencil cells {∆2m,∆m,∆p,∆2p}
• Substitute these averages in the update formula to compute the mean value of the flux gradient in

the cell Ij = [−∆x/2,∆x/2]

1

12∆x
(∆2m − 8∆m + 8∆p −∆2p)T = T1 +

∆x2

24
T3 −

21∆x4

640
T5 + . . .

• Subtract the exact cell average of the gradient of the Taylor polynomial in cell
Ij = [−∆x/2,∆x/2], i.e.

1

∆x

∫ ∆x/2

−∆x/2

∂T

∂x
dx = T1 +

∆x2

24
T3 +

∆x4

1920
T5 + . . .

from the stencil computed value. The remainder term is the error of the scheme.
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Symmetric four-cell recovery scheme is fourth-order accurate

The above procedure (needs use of a compute algebra system to simplify the
computations) shows that the symmetric four-cell recovery scheme has error that goes
like

∆x4

30
T5 + O(∆x6)

showing the scheme converges with fourth-order accuracy O(∆x4) for linear advection
equation. (Reducing ∆x by 2 reduces error by a factor of 16).
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Accuracy is not everything: dispersion and diffusion

• High-order symmetric schemes like the one we derived are very accurate (even “structure
preserving” for some problems) but not robust.

• Two other properties of the scheme are important to understand: dispersion and diffusion. For this
we wil derive a numerical dispersion relation analogous to dispersion relation we derived for
linearized systems.

• Consider a single mode f (x) = e ikx where k is the wavenumber. Compute the cell-average of the
mode on each of the cells in the stencil, plug into the stencil formula to derive the numerical
dispersion relation

ik∆x =
M∑

m=−N

cme
ikm∆x

where we have written the stencil in the generic form

1

∆x

M∑
m=−N

cmfj+m
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Symmetric four-cell recovery scheme has no diffusion!

• Note that the numerical dispersion relation will in
general give a complex effective wavenumber k .

• The dispersion relation for a hyperbolic equation is
ω = λk. Hence, the real part of k represents
dispersion and imaginary part of k represents
diffusion/growth. Obviously, we want imaginary part
to be negative to avoid solution blow-up!

• The four-cell symmetric stencil has no imaginary part
of k. This related to the fact that it is symmetric
(anti-symmetric stencil coefficients). This is not
necessarily a good thing!

Figure: Real-part of numerical
dispersion relation for four-cell
recovery scheme. Notice the strong
dispersion for higher-k modes
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