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Nonlinear flux limiters: Getting around Godunov’s Theorem

To get around Godunov’s Theorem we need to construct a nonlinear scheme, even for linear
equations. One apporach is to use nonlinear flux-limiters:

Fj+1/2 = φ(rj+1)FH
j+1/2 +

(
1− φ(rj+1)

)
FL
j+1/2

where φ(r) > 0 is a limiter function: chooses between high-order and low-order flux.

• What are the low- and high-order fluxes? For high-order fluxes: use either symmetric or
higher-order upwind-biased recovery to construct the flux. For low-order use first-order
upwind fluxes.

The first-order upwind flux is “Total-Variation Diminishing” (TVD), TV(f n+1) ≤ TV(f n)
where “Total-Variation” is defined as:

TV(f ) =
∑
j

|fj+1 − fj |
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Nonlinear flux limiters

The limiter function φ(r) depends on an
estimate of the relative slopes at an interface.
For example, one choice is

rj+1/2 =
slope at upwind-edge

slope at j + 1/2

(For systems of equations one needs limit each
eigenvector instead). With this, choose a
function that maintains TVD property. Eg,
min-mod limiter

φ(r) = max
(
0,min(2r , (1 + r)/2, 2)

)
.

See Wikipedia page https://en.wikipedia.org/wiki/Flux_limiter. (Not very
high-quality but gives you a general idea).
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Nonlinear flux limiters: No “Perfect” Limiter!

• Unfortunately, there is no perfect limiter
(though some come close to perfection):
depends on problem and best to implement
many!

• Most limiters “chop off” genuine
maxima/minima: notice that φ(r < 0) = 0
which means that if there is a genuine
maxima/minima then low-order flux is
selected.

• Tricky to distinguish step-function from
parabola! “Best” limiter (IMO): Suresh and
Huynh, JCP 136, 83-99 (1997). Not an
easy paper to understand.

MONOTONICITY-PRESERVING SCHEMES 85

Let minmod (x, y) be the median of x, y, and 0. Equiva-
lently,

minmod (x, y) 5 !s[sgn(x) 1 sgn(y)] min (uxu, uyu). (2.4)

Conversely, the median function can be expressed in terms
of minmod,

median (x, y, z) 5 x 1 minmod (y 2 x, z 2 x). (2.5)

FIG. 2.1. An extrema and a discontinuity look the same over a stencil The minmod function can be extended to any number of
of three points. The values vj21 , vj and vj11 in (a) are identical to the arguments. For k arguments, minmod (z1 , ..., zk ) returns
corresponding ones in (b). the smallest argument if all arguments are positive, the

largest if all are negative, and zero otherwise. This function
can be coded as

2.1. Original Interface Value

minmod (z1 , ..., zk ) 5 s min(uz1u, ..., uzku), (2.6a)The five cell average quantities vj22 , ..., vj12 determine
a fourth degree polynomial (quartic) whose value at
xj11/2 is where

vL
j11/2 5 (2vj22 2 13vj21 1 47vj 1 27vj11 2 3vj12)/60. (2.1) s 5 !s(sgn(z1) 1 sgn(z2))

u!s(sgn(z1) 1 sgn(z3)) ... !s(sgn(z1) 1 sgn(zk ))u. (2.6b)The above choice of the original interface value results
in a spatially fifth-order accurate scheme. Other choices
include a low phase error fourth-order formula [9] Also denote by I[z1 , ..., zk ] the interval [min(z1 , ..., zk ),

max(z1 , ..., zk )].
vL

j11/2 5 (9vj22 2 56vj21 1 194vj 1 104vj11 2 11vj12)/240, We now derive constraints for the interface value so that
(2.2) monotonicity is preserved by (1.6). At interface j 2 1/2,

suppose the value vL
j21/2 lies between vj21 and vj ,

or a fifth-order accurate implicit formula [9]

vL
j21/2 [ I [vj21 , vj ]. (2.7)

(3vL
j21/2 1 6vL

j11/2 1 vL
j13/2)/10 5 (vj21 1 19vj 1 10vj11)/30.

(2.3)
Next, for the interface j 1 1/2, denote

The implicit formula has the advantage of low dispersive
vUL 5 vj 1 a(vj 2 vj21), (2.8)and dissipative errors; its disadvantage is that the tridiago-

nal matrix inversion costs more.
The original interface value defined by one of the formu- where UL stands for upper limit, and a $ 2 (more on a

las (2.1)–(2.3) creates oscillations near a discontinuity. To momentarily). Suppose the value vL
j11/2 lies between vj

suppress these oscillations, we require the interface value and vUL,
to lie inside a certain interval; that is, it must satisfy a
certain constraint. The final interface value is obtained by vL

j11/2 [ I [vj , vUL ]. (2.9)
enforcing this constraint on the original interface value.

Then, after one stage via (1.6), the solution w(1)
j lies be-2.2. First-Order Accurate Constraint

tween vj21 and vj provided that the time step satisfies
The constraint in this subsection is designed specifically the restriction

for Runge–Kutta time stepping. It has the drawback of
being only first-order accurate near extrema. The geomet-

s # 1/(1 1 a). (2.10)ric framework presented here, however, will facilitate the
accuracy-preserving extension in the next subsection.

First, we need a few definitions. Let the median of three Indeed, for increasing data, (2.7) and (2.9) imply that
the steepest slope vUL 2 vj21 satisfies vUL 2 vj21 #numbers be the number that lies between the other two.
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Generalizing recovery: path to discontinous Galerkin schemes

• In FV scheme we used cell-averages to recover interface values for use in numerical
fluxes

• What if we store more than just cell-averages? One can imagine in addition,
mean-slope, mean-quadratic moments. Lead naturally to the concept of
discontinous Galerkin schemes.

The key connection is the concept of weak-equality. Consider an interval I and select a
finite-dimensional function space on it, spanned by set of basis functions {ψk},
k = 1, . . . ,N. Choose an inner product, for example

(f , g) ≡
∫
I
f (x)g(x) dx .
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Weak-equality

Definition (Weak equality)

Two functions, f and g are said to be weakly equal if

(ψk , f − g) = 0

for all k = 1, . . . ,N. We denote weak equality by

f
.

= g .

• When we recovered polynomials across an interface in FV scheme we effectively choose a
function space, {1} , with only one basis function!

• In DG we can choose as many as we like: allows significant flexibility in designing accurate
and compact schemes; suprisingly accurate for some problems.
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What are discontinuous Galerkin schemes?

Discontinuous Galerkin schemes are a class of Galerkin schemes in which the solution is
represented using piecewise discontinuous functions.

• Galerkin minimization
• Piecewise discontinuous representation

Goal of this lecture is to understand conceptual meaning of discontinuous Galerkin
schemes and understand how to use them to solve PDEs. Much is left out as the
literature on DG is vast, but will aim to cover key conceptual ideas. Outline

• Discontinuous Galerkin representation, recovery and weak-equalities
• DG scheme for linear advection and extension to Maxwell equations. Aspects of DG

for nonlinear problems
• Application of DG to plasma kinetic equations
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DG represent state-of-art for solution of PDEs

DG algorithms hot topic in CFD and applied mathematics.

• First introduced by Reed and Hill in 1973 as a conference paper to solve steady-state
neutron transport equations. More than 2100 citations.

• Some earlier work on solving elliptic equations by Nitsche in 1971 (original paper in
German). Introduced the idea of “interior penalty”. Usually, though, DG is not used for
elliptic problems. Paradoxically, perhaps DG may be even better for certain
elliptic/parabolic problems.

• Key paper for nonlinear systems in multiple dimensions is by Cockburn and Shu (JCP, 141,
199-224, 1998). More than 1700 citations.

• Almost continuous stream of papers in DG, both for fundamental formulations and
applications to physics and engineering problems. This continues to be an active area of
research, and at present DG is under-utilized in plasma physics.
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Essential idea of Galerkin methods: L2 minimization of errors

There two key ingredients in a Galerkin scheme: selection of a finite-dimensional space of
functions and a definition of errors.

• Consider a interval [−1, 1]. On this, we can choose Legendre polynomials Pl(x) up to some
order l < N as a basis-set.

• We need to define a way to measure errors on this function space. One way to do this is to
select an inner product and then use it to define a norm. For example consider the
inner-product

(f , g) =

∫ 1

−1
f (x)g(x) dx

using which we can define the L2 norm

‖f ‖2 = (f , f )

Once we have selected the finite-dimensional space of functions and a norm, we can use it to
construct a Galerkin method.
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Essential idea of Galerkin methods: L2 minimization of errors

Consider a general time-dependent problem on x ∈ [−1, 1]:

f ′(x , t) = G [f ]

where G [f ] is some operator. To approximate it expand f (x) with our basis functions Pk(x),

f (x , t) ≈ fh(x , t) =
N∑

k=1

fk(t)Pk(x)

This gives discrete system

N∑
k=1

f ′kPk(x) = G [fh]

Question

How to determine f ′k in an optimum manner?
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Essential idea of Galerkin methods: L2 minimization of errors

Answer: Do an L2 minimization of the error, i.e. find f ′k such that the error as defined by our
selected norm is minimized.

EN =

∥∥∥∥∥
N∑

k=1

f ′kPk(x)− G [fh]

∥∥∥∥∥
2

=

∫ 1

−1

[
N∑

k=1

f ′kPk(x)− G [fh]

]2
dx

For minimum error ∂EN/∂f
′
m = 0 for all k = 1, . . . ,N. This leads to the linear system that

determines the coefficients f ′k∫ 1

−1
Pm(x)

(
N∑

k=1

f ′kPk(x)− G [fh]

)
dx = 0

for all m = 1, . . . ,N. This will give

f ′k =
2k + 1

2

∫ 1

−1
Pk(x)G [fh] dx
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Typical L2 fit look like for Galerkin scheme?

Consider finding the best-fit on finite-dimensional space for the function
f (x) = 3 + (x − 0.5)4 + 2x3 − 5x2 on x ∈ [−1, 1]. Choose normalized Legendre
polynomials as basis functions.

Figure: Best L2 fit with p = 0, p = 1, p = 2 and p = 4 for f (x) = 3 + (x − 0.5)4 + 2x3 − 5x2

on x ∈ [−1, 1].
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Typical L2 fit look like: discontinuous Galerkin scheme

In discontinuous Galerkin schemes we split interval into cells and use Galerkin scheme
in each cell. This will naturally lead to discontinuities across cell boundaries.

Figure: The best L2 fit of x4 + sin(5x) with piecewise linear (left) and quadratic (right) basis
functions.
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Weak-equality and recovery

• It is important to remember that the discontinuous Galerkin solution is a representation of the
solution and not the solution itself.

• Notice that even a continuous function will, in general, have a discontinuous representation in DG.

We can formalize this idea using the concept of weak-equality.

Definition (Weak equality)

Two functions, f and g are said to be weakly equal if

(ψk , f − g) = 0

for all k = 1, . . . ,N. We denote weak equality by

f
.

= g .
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Weak-equality and recovery

• Notice that weak-equality depends on the function space as well as the inner-product we selected.

• The Galerkin L2 minimization is equivalent to, for example, restating that

f ′(x , t)
.

= G [f ]

This implies (
ψk , f

′(x , t)− G [f ]
)

= 0

which is exactly what we obtained by minimizing the error defined using the L2 norm.

• Hence, we can say that the DG scheme only determines the solution in the weak-sense, that is, all
functions that are weakly equal to DG representation can be potentially interpreted as the actual
solution.

• This allows a powerful way to construct schemes with desirable properties by recovering
weakly-equal functions using the DG representations.
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Example of recovery: Exponential recovery in a cell

• Consider we have a linear representation of the particle distribution function
fh(x) = f0 + xf1 in a cell.

• We can use this to reconstruct an exponential function that has the desirable
property that it is positive everywhere in the cell. That is, we want to find

exp(g0 + g1x)
.

= f0 + xf1

• This will lead to a coupled set of nonlinear equations to determine g0 and g1

• Note that this process is not always possible: we need f0 > 0 as well as the
condition |f1| ≤ 3f0. Otherwise, the fh is not realizable (i.e. there is no positive
distribution function with the same moments as fh).
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Example of recovery: Exponential recovery in a cell

Figure: Recovery of exponential function (black) from linear function (red). Left plot is for
f0 = 1, f1 = 1 and right for f0 = 1 and f1 = 2.
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Discontinuous Galerkin scheme for linear advection

Consider the 1D passive advection equation on I ∈ [L,R]

∂f

∂t
+ λ

∂f

∂x
= 0

with λ the constant advection speed. f (x , t) = f0(x − λt) is the exact solution, where
f0(x) is the initial condition. Designing a good scheme is much harder than it looks.

• Discretize the domain into elements Ij ∈ [xj−1/2, xj+1/2]

• Pick a finite-dimensional function space to represent the solution. For DG we
usually pick polynomials in each cell but allow discontinuities across cell boundaries

• Expand f (x , t) ≈ fh(x , t) =
∑

k fk(t)wk(x).
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Find the coefficients that minimize the L2 norm of the residual

The discrete problem in DG is stated as: find fh in the function space such that for
each basis function ϕ we have∫

Ij

ϕ

(
∂fh
∂t

+ λ
∂fh
∂x

)
dx = 0.

Integrating by parts leads to the discrete weak-form∫
Ij

ϕ
∂fh
∂t

dx + λϕj+1/2F̂j+1/2 − λϕj−1/2F̂j−1/2 −
∫
Ij

dϕ

dx
λfh dx = 0.

Here F̂ = F̂ (f +h , f
−
h ) is the consistent numerical flux on the cell boundary. Integrals are

performed using high-order quadrature schemes.
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Need to select numerical flux

• Take averages (central fluxes)

F̂ (f +h , f
−
h ) =

1

2
(f +h + f −h )

• Use upwinding (upwind fluxes)

F̂ (f +h , f
−
h ) = f −h λ > 0

= f +h λ < 0

20 / 34 https://ast560.rtfd.io



Example: Piecewise constant basis functions

• A central flux with piecewise constant basis functions leads to the familiar central
difference scheme

∂fj
∂t

+ λ
fj+1 − fj−1

2∆x
= 0

• An upwind flux with piecewise constant basis functions leads to the familiar upwind
difference scheme (for λ > 0)

∂fj
∂t

+ λ
fj − fj−1

∆x
= 0

Solution is advanced in time using a suitable ODE solver, usually strong-stability
preserving Runge-Kutta methods. (See G2 website)
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Example: Piecewise constant basis functions with central flux

Figure: Advection equation solution (black) compared to exact solution (red) with central fluxes
and piecewise constant basis functions.
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Example: Piecewise constant basis functions with upwind flux

Figure: Advection equation solution (black) compared to exact solution (red) with upwind
fluxes and piecewise constant basis functions.
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Passive advection with piecewise linear basis functions

To get better results, we can use piecewise linear polynomials instead. That is, select the basis
functions

ϕ ∈ {1, 2(x − xj)/∆x}

In terms of which the solution in each cell is expanded as fj(x , t) = fj,0 + 2fj,1(x − xj)/∆x .
With this, some algebra shows that we have the update formulas for each stage of a
Runge-Kutta method

f n+1
j,0 = f nj,0 − σ

(
F̂j+1/2 − F̂j−1/2

)
f n+1
j,1 = f nj,1 − 3σ

(
F̂j+1/2 + F̂j−1/2

)
+ 6σfj,0

where σ ≡ λ∆t/∆x . As these are explicit schemes we need to ensure time-step is sufficiently
small. Usually, we need to ensure σ = λ∆t/∆x ≤ 1/(2p + 1).
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Passive advection with piecewise linear basis functions

Figure: Advection equation solution (black) compared to exact solution (red) with upwind
fluxes and piecewise linear basis functions.

In general, with upwind fluxes and linear basis functions numerical diffusion goes like
|λ|∆x3∂4f /∂x4.
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Properties of the discrete equations

From the continuous passive advection equation we can show that, on a periodic
domain the total particles are conserved

d

dt

∫
I
f dx = 0

Also, the L2 norm of the solution is also conserved

d

dt

∫
I

1

2
f 2 dx = 0

We would like to know if our discrete scheme inherits or mimics these properties.
Sometimes, methods in which the discrete scheme inhert important properties from the
continuous equations are called mimetic methods. However, note that in general it is
impossible to inhert all properties and often it is not desirable to do so.
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To prove properties start from discrete weak-form

To understand properties of the scheme we must (obviously) use the discrete weak-form as the starting
point. ∫

Ij

ϕ
∂fh
∂t

dx + λϕj+1/2F̂j+1/2 − λϕj−1/2F̂j−1/2 −
∫
Ij

dϕ

dx
λfh dx = 0.

A general technique is to use a function belonging to the finite-dimensional function space as the test
function ϕ in the discrete weak-form.
Example: consider we set ϕ = 1. Then we get∑

j

∫
Ij

∂fh
∂t

dx + λ
∑
j

(
F̂j+1/2 − F̂j−1/2

)
= 0.

The second term sums to zero and so we have shown that

d

dt

∑
j

∫
Ij

fh dx = 0.
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To prove properties start from discrete weak-form

Now, consider we use the solution itself as the test function. We can do this as the solution, by
definition, belongs to the finite-dimensional function space. We get∑

j

∫
Ij

fh
∂fh
∂t

dx +
∑
j

(
f −hj+1/2F̂j+1/2 − f +hj−1/2F̂j−1/2

)
−
∑
j

∫
Ij

dfh
dx

fh dx = 0

We can write the last term as∑
j

∫
Ij

1

2

d

dx
f 2h dx =

1

2

∑
j

[(
f −hj+1/2

)2
−
(
f +hj−1/2

)2]
If we use upwind fluxes we can show that we get

d

dt

∑
j

∫
Ij

f 2h dx = −
∑
j

(
f −hj+1/2 − f +hj−1/2

)2
≤ 0.

Hence, the L2 norm of the solution will decay and not remain constant. However, this is the desirable
behavior as it ensures L2 stability of the discrete system. With central fluxes the L2 norm is conserved.
(Prove this)
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Summary of DG schemes for passive advection equation

• Pick basis functions. These are usually piecewise polynomials, but could be other
suitable functions.

• Construct discrete weak-form using integration by parts.

• Pick suitable numerical fluxes for the surface integrals.

• Use Runge-Kutta (or other suitable) schemes for evolving the equations in time.

• To prove properties of the scheme, start from the discrete weak-form and use
appropriate test-functions and simplify.
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How to discretize parabolic equations with DG?

• DG is traditionally used to solve hyperbolic PDEs. However, DG is also very good for the solution
of parabolic PDEs.

• One challenge here is that parabolic PDEs have second derivatives and it is not clear at first how a
discontinuous representation can allow solving such systems.

Consider the diffusion equation (subscripts represent derivatives)

ft = fxx

Choose function space and multiply by test function in this space to get weak form∫
Ij

ϕft dx = ϕfx

∣∣∣∣xj+1/2

xj−1/2

−
∫
Ij

ϕx fx dx .

In DG, as f is discontinuous, it is not clear how to compute the derivative across the discontinuity at
the cell interface in the first term. (See SimJ JE16).
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Lets revisit weak-equality and recovery

Definition (Weak equality)

Two functions, f and g are said to be weakly equal if

(ψk , f − g) = 0

for all k = 1, . . . ,N. We denote weak equality by

f
.

= g .

Recall that the DG solution is only a representation of the solution and not the solution
itself. Hence, we can consider the following “inverse” problem: given a discontinuous
solution across two cells, is it possible to recover a continuous representation that can
then be used in the above weak-form?

31 / 34 https://ast560.rtfd.io



Use weak-equality to recover continuous function

Figure: Given piecewise linear representation (black) we want to recover the continuous function
(red) such that moments of recovered and linear representation are the same in the
respective cells.
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Use weak-equality to recover continuous function

• Consider recovering f̂ on the interval I = [−1, 1], from a function, f , which has a single
discontinuity at x = 0.

• Choose some function spaces PL and PR on the interval IL = [−1, 0] and IR = [0, 1] respectively.

• Reconstruct a continuous function f̂ such that

f̂
.

= fL x ∈ IL on PL

f̂
.

= fR x ∈ IR on PR .

where f = fL for x ∈ IL and f = fR for x ∈ IR .

• To determine f̂ , use the fact that given 2N pieces of information, where N is the number of basis
functions in PL,R , we can construct a polynomial of maximum order 2N − 1. We can hence write

f̂ (x) =
2N−1∑
m=0

f̂mx
m.

Plugging this into the weak-equality relations gives a linear system for f̂m.
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Use recovered function in weak-form

Once we have determined f̂ we can use this in the discrete weak-form of the diffusion
equation: ∫

Ij

ϕft dx = ϕf̂x

∣∣∣∣xj+1/2

xj−1/2

−
∫
Ij

ϕx fx dx .

Note that now as f̂ is continuous at the cell interface there is no issue in computing its
derivative. We can, in fact, do a second integration by parts to get another discrete
weak-form ∫

Ij

ϕft dx = (ϕf̂x − ϕx f̂ )

∣∣∣∣xj+1/2

xj−1/2

+

∫
Ij

ϕxx f dx .

This weak-form has certain advantages as the second term does not contain derivatives
(which may be discontinuous at cell boundary).
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