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Godunov’s Theorem

• A very important theorem proved by Godunov is that there is no linear scheme that is
“monotonicity preserving” (no new maxima/minima created) and higher than first-order
accurate!

• Consider a general scheme for advection equation

f n+1
j =

∑
k

ck f
n
j+k .

The discrete slope then is

f n+1
j+1 − f n+1

j =
∑
k

ck
(
f nj+k+1 − f nj+k

)
.

Assume that all f nj+1 − f nj > 0. To maintain monotonicity at next time-step hence one must
have all ck ≥ 0.
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Godunov’s Theorem

• First order upwind scheme:

f n+1
j = f nj −

∆t

∆x
(f nj − f nj−1)

this satisfies monotonicity as long as ∆t/∆x ≤ 1.

• Second order symmetric scheme

f n+1
j = f nj −

∆t

2∆x
(f nj+1 − f nj−1)

clearly this does not satisfy the condition of monotonicity.

• In general condition on Taylor series to ensure atleast second-order accuracy shows that at
least one of the cks must be negative. Hence, by contradiction, no such scheme exists!
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Godunov’s Theorem: Unfortunate Consequences and Workarounds

• Godunov’s Theorem is highly distressing: accurate discretization seems to preclude a
scheme free from monotonicity violations

• One way around is to start with a linear scheme that is very accurate and then add some
local diffusion to it to control the monotonicity.

• However, Godunov’s theorem shows that this “diffusion” must be dependent on the local
solution itself and can’t be fixed a priori. This means a monotonicity preserving scheme
must be nonlinear, even for linear hyperbolic equations.

• Leads to the concept of nonlinear limiters that control the monotonicity violations (adding
diffusion to high-k modes). No free lunch: limiters must diffuse high-k modes but this will
inevitably lead to issues like inability to capture, for example, high-k turbulence spectra
correctly without huge grids.

• Major research project: interaction of shocks, boundary layers and turbulence in
high-Reynolds number flows.
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Godunov’s Theorem: Workarounds

• To prove Godunov’s Theorem we assumed that the solution at the next time-step
was a linear combination of the old time-step. However, this leads to monotonicity
violations.

• Hence, there may be hope that a nonlinear combination might allow constructing a
monotonic (shock-capturing) scheme.

• Several ways to do this: we know that first-order upwind preserves monotonicity.
Hence, perhaps combine a high-order recovery with first-order upwind in
“non-smooth” regions.

• Use a nonlinear recovery for computing the interface value. This leads to the
concept of limiters.

• Use symmetric diffusion free scheme and add controlled hyper-diffusion depending
on local solution.

5 / 13 https://ast560.rtfd.io



Diffusion, Hyperdiffusion

Consider adding a diffusion term to the RHS of the advection equation

∂f

∂t
+
∂f

∂x
= ν2

∂2f

∂x2

The diffusion term will damp modes as −ν2k2. Unfortunately, even long-wavelength
modes will be damped: Not good! How about

∂f

∂t
+
∂f

∂x
= −ν4

∂4f

∂x4

This will damp modes as −ν4k4. Even higher-order hyper-diffusion can be added.
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Diffusion, Hyperdiffusion

To discretize the (hyper)-diffusion use symmetric recovery based scheme:

∂fj
∂t

+
fj+1/2 − fj−1/2

∆x
=

ν2
∆x

(
∂fj+1/2

∂x
−
∂fj−1/2

∂x

)
For example, use 4-cell symmetric recovery across each interface and use its
first-derivative to compute gradients at each edge.

• The same recovery polynomial need not be used to compute the hyperbolic terms
and diffusion term: use upwind biased for hyperbolic, for example, and symmetric
recovery for (hyper)-diffusion.

• For hyper-diffusion a wider stencil may be needed if order is to be maintained.
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Numerical Flux Function: Lax flux

• A good choice of the numerical flux function is the local Lax flux:

G(QL,QR) =
1

2
(F(QL) + F(QR))− |λ|

2
(QR −QL)

where |λ| is an estimate of the (absolute) maximum of all eigenvalues at the interface.

• For advection equation this becomes

G (fL, fR) =
1

2
a(fL + fR)− |a|

2
(fR − fL)

This works for either sign of advection speed a, automatically giving upwinding.

• Note |λ| is only a local (to the interface) estimate. You can use a global estimate too:
orginal formulation by Peter Lax (“Lax fluxes”).
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Numerical Flux Function: Systems of equations

• Lax flux is a good “first” flux to use. However, notice it only takes into account a single
piece of information: maximum eigenvalue.

• For a linear system of equations (Maxwell equation) or locally linearized nonlinear system
we can instead do

G (QR ,QL) =
1

2

(
F (QR) + F (QL)

)
− 1

2
(A+∆QR,L − A−∆QR,L)

where the fluctuations A±∆Q are defined as

A±∆QR,L ≡
∑
p

rpλ±p (wp
R − wp

L ) =
∑
p

rpλ±p l
p(QR − QL).

where λ+p = max(λp, 0) and λ−p = min(λp, 0).

• Additional care is needed for nonlinear equations like Euler or ideal MHD equations.
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Numerical Flux Function: Nonlinear equations

• For nonlinear scalar Burgers’ equation (F (f ) = f 2/2) we can use Lax-fluxes

G (fL, fR) =
1

4
(f 2L + f 2R )− |s|

2
(fR − fL)

where now we compute the speed s = (fR + fL)/2. Note that the speed s is that of
a shock with left/right values fR and fL.

• For more complicated system of equations (Euler, ideal MHD) one can use Lax
fluxes (good first choice). Or, use a Roe solver (JCP, 43, 357-372 (1981)).

• Roe solvers work by computing the flux Jacobian using suitable “Roe averages” and
using these to compute eigenvalues and left/right eigenvectors and using the flux
function for linear system of equations.
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Roe averaging and Roe solver for numerical flux

• The Roe solver works by local linearization at an interface in which the nonlinear equation
is written as

∂Q

∂t
+ A

∂Q

∂x
= 0

where A = A(QL,QR) is the flux Jacobian computed using left/right states at that
interface.

• For conservation one must ensure the flux-jump condition

A(QL,QR)(QL −QR) = F(QL)− F(QR).

This puts serious constraints on how A is constructed. Roe realized a special way in which
this could be done for Euler equations. Probably the most important advance in numerical
methods for shock-dominanted/supersonic flow problems.

• Vast (majority?) number of fluid and MHD codes in CFD, astrophysics,
(general-)relativistic hydro, use Roe solver. Huge number of variants and “fixes”.
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Generalizing recovery: path to discontinous Galerkin schemes

• In FV scheme we used cell-averages to recover interface values for use in numerical
fluxes

• What if we store more than just cell-averages? One can imagine in addition,
mean-slope, mean-quadratic moments. Lead naturally to the concept of
discontinous Galerkin schemes.

The key connection is the concept of weak-equality. Consider an interval I and select a
finite-dimensional function space on it, spanned by basis functions ψk , k = 1, . . . ,N.
Choose an inner product, for example

(f , g) ≡
∫
I
f (x)g(x) dx .
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Weak-equality

Definition (Weak equality)

Two functions, f and g are said to be weakly equal if

(ψk , f − g) = 0

for all k = 1, . . . ,N. We denote weak equality by

f
.

= g .

• When we recovered polynomials across an interface in FV scheme we effectively choose a
function space with only one basis function!

• In DG we can choose as many as we like: allows significant flexibility in designing accurate
and compact schemes; suprisingly accurate for some problems.
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