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Godunov's Theorem

A very important theorem proved by Godunov is that there is no linear scheme that is
“monotonicity preserving” (no new maxima/minima created) and higher than first-order
accurate!

Consider a general scheme for advection equation
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il — 15-” > 0. To maintain monotonicity at next time-step hence one must
have all ¢, > 0.



Godunov's Theorem

First order upwind scheme:
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this satisfies monotonicity as long as At/Ax < 1.
Second order symmetric scheme
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clearly this does not satisfy the condition of monotonicity.

In general condition on Taylor series to ensure atleast second-order accuracy shows that at
least one of the cxs must be negative. Hence, by contradiction, no such scheme exists!



Godunov's Theorem: Unfortunate Consequences and Workarounds

Godunov's Theorem is highly distressing: accurate discretization seems to preclude a
scheme free from monotonicity violations

One way around is to start with a linear scheme that is very accurate and then add some
local diffusion to it to control the monotonicity.

However, Godunov's theorem shows that this “diffusion” must be dependent on the local
solution itself and can't be fixed a priori. This means a monotonicity preserving scheme
must be nonlinear, even for linear hyperbolic equations.

Leads to the concept of nonlinear limiters that control the monotonicity violations (adding
diffusion to high-k modes). No free lunch: limiters must diffuse high-k modes but this will
inevitably lead to issues like inability to capture, for example, high-k turbulence spectra
correctly without huge grids.

Major research project: interaction of shocks, boundary layers and turbulence in
high-Reynolds number flows.



Godunov's Theorem: Workarounds

To prove Godunov's Theorem we assumed that the solution at the next time-step
was a linear combination of the old time-step. However, this leads to monotonicity
violations.

Hence, there may be hope that a nonlinear combination might allow constructing a
monotonic (shock-capturing) scheme.

Several ways to do this: we know that first-order upwind preserves monotonicity.
Hence, perhaps combine a high-order recovery with first-order upwind in
“non-smooth” regions.

Use a nonlinear recovery for computing the interface value. This leads to the
concept of limiters.

Use symmetric diffusion free scheme and add controlled hyper-diffusion depending
on local solution.



Diffusion, Hyperdiffusion

Consider adding a diffusion term to the RHS of the advection equation
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The diffusion term will damp modes as —1»k?. Unfortunately, even long-wavelength
modes will be damped: Not good! How about
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This will damp modes as —v4k*. Even higher-order hyper-diffusion can be added.



Diffusion, Hyperdiffusion

To discretize the (hyper)-diffusion use symmetric recovery based scheme:
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For example, use 4-cell symmetric recovery across each interface and use its
first-derivative to compute gradients at each edge.

The same recovery polynomial need not be used to compute the hyperbolic terms
and diffusion term: use upwind biased for hyperbolic, for example, and symmetric

recovery for (hyper)-diffusion.
For hyper-diffusion a wider stencil may be needed if order is to be maintained.



Numerical Flux Function: Lax flux

A good choice of the numerical flux function is the local Lax flux:
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where |\| is an estimate of the (absolute) maximum of all eigenvalues at the interface.

For advection equation this becomes

1
G(f[_, fR) = Ea(fL + fR) — 7(fR — fL)

This works for either sign of advection speed a, automatically giving upwinding.

Note |A| is only a local (to the interface) estimate. You can use a global estimate too:
orginal formulation by Peter Lax (“Lax fluxes").



Numerical Flux Function: Systems of equations

Lax flux is a good “first” flux to use. However, notice it only takes into account a single
piece of information: maximum eigenvalue.

For a linear system of equations (Maxwell equation) or locally linearized nonlinear system
we can instead do
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where the fluctuations AAAQ are defined as
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where A = max(\;,0) and A, = min(),,0).

Additional care is needed for nonlinear equations like Euler or ideal MHD equations.



Numerical Flux Function: Nonlinear equations

For nonlinear scalar Burgers' equation (F(f) = f2/2) we can use Lax-fluxes
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1
G(fL, fr) = Z(sz +f3) — j(fR — f1)

where now we compute the speed s = (fg + f.)/2. Note that the speed s is that of
a shock with left/right values fg and f;.

For more complicated system of equations (Euler, ideal MHD) one can use Lax
fluxes (good first choice). Or, use a Roe solver (JCP, 43, 357-372 (1981)).

Roe solvers work by computing the flux Jacobian using suitable “Roe averages” and

using these to compute eigenvalues and left/right eigenvectors and using the flux
function for linear system of equations.
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Roe averaging and Roe solver for numerical flux

The Roe solver works by local linearization at an interface in which the nonlinear equation

is written as
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where A = A(Q, Qg) is the flux Jacobian computed using left/right states at that
interface.

For conservation one must ensure the flux-jump condition
A(Q.L,Qr)(QL — Qr) = F(QL) — F(Qr).

This puts serious constraints on how A is constructed. Roe realized a special way in which
this could be done for Euler equations. Probably the most important advance in numerical
methods for shock-dominanted/supersonic flow problems.

Vast (majority?) number of fluid and MHD codes in CFD, astrophysics,
(general-)relativistic hydro, use Roe solver. Huge number of variants and “fixes”.



Generalizing recovery: path to discontinous Galerkin schemes

In FV scheme we used cell-averages to recover interface values for use in numerical
fluxes

What if we store more than just cell-averages? One can imagine in addition,
mean-slope, mean-quadratic moments. Lead naturally to the concept of
discontinous Galerkin schemes.

The key connection is the concept of weak-equality. Consider an interval | and select a
finite-dimensional function space on it, spanned by basis functions ¢, k=1,..., N.
Choose an inner product, for example

(f,g) = /lf(x)g(x) dx.



Weak-equality

Definition (Weak equality)
Two functions, f and g are said to be weakly equal if
(¢k> f — g) — O

forall k=1,..., N. We denote weak equality by

f=g.

When we recovered polynomials across an interface in FV scheme we effectively choose a
function space with only one basis function!

In DG we can choose as many as we like: allows significant flexibility in designing accurate
and compact schemes; suprisingly accurate for some problems.



