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Goal: Methods for solution of hyperbolic/mixed PDEs

Hyperbolic (or mixed) PDEs appear everywhere in physics and engineering: Euler
equations, Navier-Stokes equations, MHD equations, Einstein’s equation of general
relativity, shallow-water equations, ....

• Describe phenomena that travel with finite-speed: clearly all fundamental physics
must obey causality, hence hyperbolic systems are fundamental (though
approximations of hyperbolic equations may violate finite-speed constraint).

• Display very rich structure shocks and other discontinuities, instabilities, turbulence
... and in most problems, a mix of all!

• Specialized methods are needed to solve such systems: naive algorithms can cause
disaster!

My goal is to develop conceptual understanding about such equations and numerical
methods to solve them. Literature is too vast to cover in few lectures!

2 / 16 https://ast560.rtfd.io



No Free Lunch Principle

No Free Lunch Principle

There is no unique discrete system of equations corresponding to a given system of
continuous equations. No discrete system is perfect and a method that works well in
one situation may not work well in others.

“All numerical methods suck, though some suck less than others. Make sure your
method sucks less that the competition”
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Dissipation, dispersion and robustness

Typically, numerical methods trade between accuracy and robustness. Very accurate
schemes are not too robust and highly robust schemes are typically not very accurate.
Must find a balance.

• To capture shocks and sharp gradient features some localized diffusion (dissipation)
is needed via limiters or some other means. Some dissipation may also be needed
for stability.

• Dissipation typical leads to a loss of other properties: in particular, for Maxwell
equations it can cause EM energy to decay. For Euler equations high-k modes may
get over-damped due to limiters: not good for turbulence problems.

• An ideal situation is to apply dissipation only where it is needed and use
low-dissipation schemes elsewhere. However, this is easier said than done. How to
determine where to apply dissipation is very tricky, specially in nonlinear complex
flows. Ease to confuse physical features for numerical artifacts (and vice-versa!)
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Hyperbolic PDEs describe phenomena that travel at finite speed

An intuitive “definition” that we will initially work with before stating the mathematically
rigorous definition:

Definition (Hyperbolic PDEs “Intuitive Definition”)

A hyperbolic PDE is one in which all phenomena travel at a finite speed.

Some prototypical examples we will look at more closely:

• Advection equation: simplest trivial linear hyperbolic equation. Trivial but very important!

• Maxwell equation of electromagnetism: linear hyperbolic system

• Euler equations: probably historically the most important nonlinear hyperbolic system.
Basis of vast literature on numerical methods and basis for more complex equations: ideal
MHD, (general) relativistic hydro/MHD, Navier-Stokes solvers, etc. Need to understand
even if you want to follow literature and apply methods to your own problem.
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Hyperbolic PDEs: rigorous definition, no reliance on linearization

Consider a system of conservation laws written as

∂Q

∂t
+
∂F

∂x
= 0.

where Q is a vector of conserved quantities and F(Q) is a vector of fluxes. This system
is called hyperbolic if the flux Jacobian

A ≡ ∂F

∂Q

has real eigenvalues and a complete set of linearly independent eigenvectors. In
multiple dimensions if Fi are fluxes in direction i then we need to show that arbitrary
linear combinations

∑
i ni∂Fi/∂Q have real eigenvalues and linearly independent set of

eigenvectors.
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To compute eigensystem often easier to work in quasilinear form

To derive eigensystem it is sometimes easier to work in non-conservative (quasi-linear)
form of equations. Start with

∂Q

∂t
+
∂F

∂x
= 0.

and introduce an invertible transform Q = ϕ(V) where V are some other variables (for
example: density, velocity and pressure). Then the system converts to

∂V

∂t
+ (ϕ′)−1Aϕ′︸ ︷︷ ︸

B

∂V

∂x
= 0.

Can easily show eigenvalues of A are same as that of B and right eigenvectors can be
computed from ϕ′rp and left eigenvectors from lp(ϕ′)−1.
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Burgers’ equation

Simplest nonlinear scalar equation, has a quadratic nonlinearity:

∂u

∂t
+

∂

∂x

(
1

2
u2

)
= 0.

Eigenvalue λ = u. Note that locally, eigenvalue depends on the solution itself: leads to a situation in
which after some finite time to the formation of a shock as the “characteristics” will intersect.

24 3 Scalar Conservation Laws 
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Figure 3.3. Characteristics and solution for Burgers' equation (small t). 

This is about the simplest model that includes the nonlinear and viscous effects of fluid 
dynamics. 

Around 1950, Hopf, and independently Cole, showed that the exact solution of the 
nonlinear equation (3.15) could be found using what is now called the Cole-Hopf trans-
formation. This reduces (3.15) to a linear heat equation. See Chapter 4 of Whitham[97] 
for details. 

Consider the inviscid equation (3.14) with smooth initial data. For small time, a 
solution can be constructed by following characteristics. Note that (3.14) looks like an 
advection equation, but with the advection velocity u equal to the value of the advected 
quantity. The characteristics satisfy 

x'(t) = u(x(t), t) (3.16) 

and along each characteristic u is constant, since 

d 
dt u(x(t), t) :tu(x(t),t) + ;xu(x(t),t)x'(t) 

Ut + uU x (3.17) 

o. 

Moreover, since u is constant on each characteristic, the slope x'(t) is constant by (3.16) 
and so the characteristics are straight lines, determined by the initial data (see Fig. 3.3). 

If the initial data is smooth, then this can be used to determine the solution u(x, t) for 
small enough t that characteristics do not cross: For each (x, t) we can solve the equation 

x = ú =+ ì E ú I l F í = (3.18) 

for ú = and then 
u(x,t) = ì E ú I l F K = (3.19) 
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Burgers’ equation: shock formation

Due to varying characteristics speed
(eigenvalue) the solution can “pile up”
leading to the formation of a shock.
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Weak-solutions and entropy conditions

At a shock the solution has a discontinuity. Hence, derivatives are not defined! Differential form of the
equations break-down. We must use concept of weak-solutions in this case.

Let φ(x , t) is a compactly supported (i.e. zero outside some bounded region) smooth function (enough
continuous derivatives). Then multiply conservation law∫ ∞

0

∫ ∞
−∞

φ(x , t)

[
∂Q

∂t
+
∂F

∂x

]
dx dt = 0

by φ(x , t) and integrating by parts to get the weak-form∫ ∞
0

∫ ∞
−∞

[
∂φ

∂t
Q +

∂φ

∂x
F

]
dx dt = −

∫ ∞
−∞

φ(x , 0)Q(x , 0)dx dt.

Definition (Weak-solution)

A function Q(x , t) is said to be a weak-solution if it satisfies the weak-form for all compact, smooth
φ(x , t).
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Weak-solutions and entropy conditions

Unfortunately, weak-solutions are not unique! Why does this happen?

In physical problems there is always some non-ideal effects (viscosity, Landau damping
etc) that does not allow a genuine discontinuity to form. However, this “viscous shock
layer” can be extremely thin compared to system size. Also, we know entropy must
increase in the physical universe.

This indicates we can recover uniqueness in two ways

• Add a viscous (diffusion) term and take limit of viscosity going to zero. (Generally
not convenient for numerical work)

• Impose entropy condition: construct an entropy function such that it remains
conserved for smooth solutions but increases across a shock. Entropy is naturally
suggested in most physical problems.
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Weak-solutions and entropy conditions

When characteristics diverge (right plot below) the weak-solution is not unique. A false
“shock” solution also is a weak-solution. Imposing entropy condition gives a rarefaction wave
seen in the right plot.
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Euler equations of invicid fluids

∂

∂t


ρ
ρu
ρv
ρw
E

 +
∂

∂x


ρu

ρu2 + p
ρuv
ρuw

(E + p)u

 = 0

Here E = p/(γ − 1) + ρu2/2 is the total energy. Eigenvalues of this system are
{u − cs , u, u, u, u + cs} where cs =

√
γp/rho is the sound speed. See class notes for

left/right eigenvectors.

Note: in the limit p → 0 all eigenvalues become u and for cold-fluid (p = 0) the system
does not possess complete set of eigenvectors. (Cold fluid model is important to model
dust, for example, in astrophysical systems or in say volcanic explosions).
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Euler equations: transport of kinetic energy

The energy conservation equation for Euler equation is

∂E
∂t

+∇ · [(E + p)u] = 0

where

E =
p

γ − 1︸ ︷︷ ︸
IE

+
1

2
ρu2︸ ︷︷ ︸
KE

.

We can derive instead a balance law (not conservation law) for transport of KE

∂

∂t

(
1

2
ρu2

)
+∇ ·

(
1

2
ρu2u

)
= −u · ∇p+

q

m
ρu · E

For turbulence calculations it is important to ensure that in the numerics exchange of kinetic and
internal energy (and in case of plasma field-particle energy) is only via the RHS terms (pressure work
and work done by electric field).

Many shock-capturing and higher-order methods can mess this up for high-k (short wavelength) modes
due leading to incorrect energy spectra. (No Free Lunch Principle).
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Euler equations: shocks, rarefactions and contacts

In addition to shocks and rarefactions which we saw in Burgers’s equation, Euler
equations also support contact discontinuities, across which density has a jump but not
pressure or velocity.
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Ideal MHD equations

Ideal MHD equations are very important to both fusion and astrophysical problems. Written in
non-conservative form they are

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u = 0

∂u

∂t
+ u · ∇u +

∇p
ρ

=
1

µ0ρ
(∇× B)× B

∂p

∂t
+ u · ∇p + γp∇ · u = 0

∂B

∂t
−∇× (u× B) = 0

with the constraint ∇ · B = 0. The eigensystem is complicated to compute! (Try doing it
yourself). Eigenvalues are u ± cf , u ± cs , u ± ca, and u (7 eigenvalues for 8 equations). Here
cf , cs are the fast/slow magnetosonic speeds and ca is the Alfven speed. See Ryu and Jones
ApJ 442 228-258, 1995 (linked on website).
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