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Steps in constructing finite-volume method
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To completely specify a finite-volume scheme we must design algorithms for each of the
following three steps:

Step 1: A recovery scheme (possibly with limiters) to compute the left/right
interface values QT at each interface using a set of cell-average values around that
interface,

Step 2: A numerical flux function that takes the left/right values and returns a
consistent approximation to the physical flux, and

Step 3: A time-stepping scheme to advance the solution in time and compute
the cell-averages at the next time-step.
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Essence of the finite-volume method
Instead of computing one edge value we will
QJ—H

compute two values: one the left and one on right
of cell-edge. We will next define a numerical flux

function Q'ng
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In terms of the numerical flux function the FV update formula becomes
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Numerical Flux Function

The numerical flux function computes a consistent flux at the cell-edge from the cell averages.

(QL, Qr) = F(Q).

lim G
QL r—Q
Examples
Central Flux in which we simply average the flux from the two states at the interface

G(QL, Qr) = 3 (F(QL) + F(Qr)).

Upwind Flux in which we choose the edge on the “upwind” side to account for direction of
information flow:

G(Q.,Qr) = F(Qu)
if information is flowing from left-to-right, and
G(Q.,Qr) = F(Qr)

if information is flowing from right-to-left. Begs the question: how to determine which direction
information is flowing in? Answer: the eigensystem of the hyperbolic equation contains this!



Numerical Flux Function: Lax flux

A good choice of the numerical flux function is the local Lax flux:

Al

G(QL,Qr) = >

(F(QL) + F(Qr)) — 5 (Qr — Qy)
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where |\| is an estimate of the (absolute) maximum of all eigenvalues at the interface.

For advection equation this becomes

1
G(f[_, fR) = Ea(fL + fR) — 7(fR — fL)

This works for either sign of advection speed a, automatically giving upwinding.

Note |A| is only a local (to the interface) estimate. You can use a global estimate too:
orginal formulation by Peter Lax (“Lax fluxes").



Numerical Flux Function: Systems of equations

Lax flux is a good “first” flux to use. However, notice it only takes into account a single
piece of information: maximum eigenvalue.

For a linear system of equations (Maxwell equation) or locally linearized nonlinear system
we can instead do

G(Qr, Q) = 5 (F(QR) + F(QL) — 5(A*AQrs —~ A~ AQR1)

21
2
where the fluctuations AT AQ are defined as

AEAQR,L = Z rPAS(Wh — w)) = Z rPAZIP(Qr — QL)
P 3

where A} = max()p,0) and A; = min(),,0).

Additional care is needed for nonlinear equations like Euler or ideal MHD equations. More
on this on Thursday.
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Some notation for use in recovery stencils

Example: symmetric recovery across two cells can be written as

1 1
Qiy1/2 = E(Qiﬂ + Q)= E(dp + dn)Qit1/2

Example: central difference scheme for second derivative:

82 ; 1 1
052) - m(QH,l —2Qi+ Qi-1) = E(AP =2/ 4+ Am)Qi
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Basic indexing operators to move from cell to cell, face to cell and cell to face.
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Recovery scheme: four-cell stencil, centered scheme

To construct a four-cell symmetric stencil recovery across an interface we will use a four-cell
stencil: {dam, dm, dp, dop }

Setup a local coordinate system with x = 0 at the interface and assume a polynomial recovery
p(x) = po + p1x + p2x° + p3x’

Match the cell-averages of p(x) in each of the cells {dam, dm, dp, dap} to get a system of linear
equations. Solve this system to determine po, p1, p2, p3-



Recovery scheme: four-cell stencil, centered scheme

Solving the system of four equations for the four coefficients p;, i =0,...,3 yields:
1
Po = 75(—dom + Tdm + 7dp — dp)Q
1
p1 = 12AX(d2m — 15d,, + 15dp — dzp)Q
1
P2 = 4 x 2(d2m —dm — dp+d2p)Q
1
Pa = 6/Ax A3 (dgm 3dm + 3dp — dzp)Q.

Notice: stencils of the even coefficients are symmetric and the odd coefficients are
anti-symmetric.

To compute the interface value we do not really need all of these coefficients but
only need to evaluate the recovery polynomial at x = 0, i.e we only need p(0) = po
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Recovery scheme: four-cell stencil, centered scheme
To compute the interface value we do not really need all of these coefficients but only need to

evaluate the recovery polynomial at x = 0, i.e we only need p(0) = pg. Hence, the interface
value can be computed from

1
Q+ =Q = E(—dzm +7d, + 7dp — dgp)Q.

Note that due the symmetric nature of the stencil we have only a single value at the interface.
This means that the numerical flux function at an interface is simply

G(Q,Q)=F(Q)

from consistency requirements.This completes the spatial finite-volume discretization! The
scheme one gets from this is very accurate (even “structure preserving” for Maxwell equations),
though not very robust in presence of sharp gradients. (No Free Lunch)



How accurate is any given scheme?

To fix ideas consider we wish to solve the advection equation

of n of
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Using the four-cell symmetric recovery scheme to compute interface values in the FV
update formula we get the semi-discrete scheme five-cell stencil update formula:
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How accurate is this scheme, or what is its order of convergence?



How accurate is any given scheme? Use Taylor series

Take a Taylor series polynomial around the cell center of cell [; = [-Ax/2, Ax/2] locally at x =0
Tn n
T(x)= Z X
n=0

Compute the cell average of this polynomial in each of the stencil cells {Aom, Am, Ap, Az}

Substitute these averages in the update formula to compute the mean value of the flux gradient in
the cell [} = [-Ax/2, Ax/2]
1 Ax? 21AX*
——(Aom — 8A, Ay, —DAop))T = T; Ts— ——Ts+...
120 Pom = 88m + 84, — Az) 1t BT e BT
Subtract the exact cell average of the gradient of the Taylor polynomial in cell
li = [-Ax/2,Ax/2], i.e.

1 29T AX? Ax*
= Clgx=Ti+ 25T Ts+...
Ax/_m/2 ox XTIt g s

from the stencil computed value. The remainder term is the error of the scheme.



Symmetric four-cell recovery scheme is fourth-order accurate

The above procedure (needs use of a compute algebra system to simplify the
computations) shows that the symmetric four-cell recovery scheme has error that goes

like

Ax?
— T Ax®
30 5+O( X)

showing the scheme converges with fourth-order accuracy O(Ax*) for linear advection
equation. (Reducing Ax by 2 reduces error by a factor of 16).



Accuracy is not everything: dispersion and diffusion

High-order symmetric schemes like the one we derived are very accurate (even “structure
preserving” for some problems) but not robust.

Two other properties of the scheme are important to understand: dispersion and diffusion. For this
we wil derive a numerical dispersion relation analogous to dispersion relation we derived for
linearized systems.

Consider a single mode f(x) = e™ where k is the wavenumber. Compute the cell-average of the
mode on each of the cells in the stencil, plug into the stencil formula to derive the numerical
dispersion relation

M
T imkA
ikAx = E Cmem e

m=—N

where we have written the stencil in the generic form



Symmetric four-cell recovery scheme has no diffusion!

3.0
Note that the numerical dispersion relation will in 25
general give a complex effective wavenumber k. 20
The dispersion relation for a hyperbolic equation is S1s
w = Ak. Hence, the real part of k represents 1.0
dispersion and imaginary part of k represents 05
diffusion/growth. Obviously, we want imaginary part 0o

to be negative to avoid solution blow-up!

The four-cell symmetric stencil has no imaginary part
of k. This related to the fact that it is symmetric
(anti-symmetric stencil coefficients). This is not
necessarily a good thing!

Real-part of numerical
dispersion relation for four-cell
recovery scheme. Notice the strong
dispersion for higher-k modes



Closer look at numerical dispersion relation

The numerical dispersion relation determines the wave-vector that the time-propagator
of the scheme sees. Consider:

M
ik = ik(k) = Z Ce'kmAX
m=—N

If we are solving a linear advection equation with a single mode solution like e~ "“kteikx

where wi = Ak then the effective mode in the discrete scheme will be

Wy = )\E(k).

Hence, the numerical scheme adds numerical dispersion to propagating waves as now
the phase- and group-velocity are no longer constant.



Godunov's Theorem

A very important theorem proved by Godunov is that there is no linear scheme that is
“monotonicity preserving” (no new maxima/minima created) and higher than first-order
accurate!

Consider a general scheme for advection equation
n+1 __ n
i = Z il
k
The discrete slope then is

n+1 n+1 __ n __£n
i = = Z k (Feer — fhe) -
K

Assume that all "

il — 15-” > 0. To maintain monotonicity at next time-step hence one must
have all ¢, > 0.



Godunov's Theorem

First order upwind scheme:

n+l _ rn n n
i =1 _E(ﬂ —f24)

this satisfies monotonicity as long as At/Ax < 1.
Second order symmetric scheme

At

n+1 n n n
T =6 = s (= 1)

clearly this does not satisfy the condition of monotonicity.

In general condition on Taylor series to ensure atleast second-order accuracy shows that at
least one of the cxs must be negative. Hence, by contradiction, no such scheme exists!



Godunov's Theorem: Unfortunate Consequences and Workarounds

Godunov's Theorem is highly distressing: accurate discretization seems to preclude a
scheme free from monotonicity violations

One way around is to start with a linear scheme that is very accurate and then add some
local diffusion to it to control the monotonicity.

However, Godunov's theorem shows that this “diffusion” must be dependent on the local
solution itself and can't be fixed a priori. This means a monotonicity preserving scheme
must be nonlinear, even for linear hyperbolic equations.

Leads to the concept of nonlinear limiters that control the monotonicity violations (adding
diffusion to high-k modes). No free lunch: limiters must diffuse high-k modes but this will
inevitably lead to issues like inability to capture, for example, high-k turbulence spectra
correctly without huge grids.

Major research project: interaction of shocks, boundary layers and turbulence in
high-Reynolds number flows.



