
Discontinuous Galerkin Schemes, Explicit/Implicit Time-stepping

Ammar H. Hakim (ammar@princeton.edu) 1

1Princeton Plasma Physics Laboratory, Princeton, NJ

Princeton University, Course AST560, Spring 2021

What are discontinuous Galerkin schemes?

Discontinuous Galerkin schemes are a class of Galerkin schemes in which the solution is
represented using piecewise discontinuous functions.

• Galerkin minimization

• Piecewise discontinuous representation

2 / 35 https://ast560.rtfd.io

Weak-equality and recovery

• It is important to remember that the discontinuous Galerkin solution is a
representation of the solution and not the solution itself.

• Notice that even a continuous function will, in general, have a discontinuous
representation in DG.

We can formalize this idea using the concept of weak-equality by stating that DG only
determines the solution to an equivalence class of weakly-equal functions.

3 / 35 https://ast560.rtfd.io

Weak-equality and recovery

• Notice that weak-equality depends on the function space as well as the inner-product we
selected.

• The Galerkin L2 minimization is equivalent to, for example, restating that

f ′(x , t)
.

= G [f]

This implies

(ψk , f
′(x , t)− G [f]) = 0

which is exactly what we obtained by minimizing the error defined using the L2 norm.

• Hence, we can say that the DG scheme only determines the solution in the weak-sense, that
is, all functions that are weakly equal to DG representation can be potentially interpreted as
the actual solution.

• This allows a powerful way to construct schemes with desirable properties by recovering
weakly-equal functions using the DG representations.

4 / 35 https://ast560.rtfd.io

Example of recovery: Exponential recovery in a cell

• Consider we have a linear representation of the particle distribution function
fh(x) = f0 + xf1 in a cell.

• We can use this to reconstruct an exponential function that has the desirable
property that it is positive everywhere in the cell. That is, we want to find

exp(g0 + g1x)
.

= f0 + xf1

• This will lead to a coupled set of nonlinear equations to determine g0 and g1

• Note that this process is not always possible: we need f0 > 0 as well as the
condition |f1| ≤ 3f0. Otherwise, the fh is not realizable (i.e. there is no positive
distribution function with the same moments as fh).

5 / 35 https://ast560.rtfd.io

Example of recovery: Exponential recovery in a cell

Figure: Recovery of exponential function (black) from linear function (red). Left plot is for
f0 = 1, f1 = 1 and right for f0 = 1 and f1 = 2.

6 / 35 https://ast560.rtfd.io

Discontinuous Galerkin scheme for linear advection

Consider the 1D passive advection equation on I ∈ [L,R]

∂f

∂t
+ λ

∂f

∂x
= 0

with λ the constant advection speed. f (x , t) = f0(x − λt) is the exact solution, where
f0(x) is the initial condition. Designing a good scheme is much harder than it looks.

• Discretize the domain into elements Ij ∈ [xj−1/2, xj+1/2]

• Pick a finite-dimensional function space to represent the solution. For DG we
usually pick polynomials in each cell but allow discontinuities across cell boundaries

• Expand f (x , t) ≈ fh(x , t) =
∑

k fk(t)wk(x).

7 / 35 https://ast560.rtfd.io

Find the coefficients that minimize the L2 norm of the residual

The discrete problem in DG is stated as: find fh in the function space such that for
each basis function ϕ we have∫

Ij

ϕ

(
∂fh
∂t

+ λ
∂fh
∂x

)
dx = 0.

Integrating by parts leads to the discrete weak-form∫
Ij

ϕ
∂fh
∂t

dx + λϕj+1/2F̂j+1/2 − λϕj−1/2F̂j−1/2 −
∫
Ij

dϕ

dx
λfh dx = 0.

Here F̂ = F̂ (f +h , f
−
h) is the consistent numerical flux on the cell boundary. Integrals are

performed using high-order quadrature schemes.

8 / 35 https://ast560.rtfd.io

Need to select numerical flux

• Take averages (central fluxes)

F̂ (f +h , f
−
h) =

1

2
(f +h + f −h)

• Use upwinding (upwind fluxes)

F̂ (f +h , f
−
h) = f −h λ > 0

= f +h λ < 0

9 / 35 https://ast560.rtfd.io

Example: Piecewise constant basis functions

• A central flux with piecewise constant basis functions leads to the familiar central
difference scheme

∂fj
∂t

+ λ
fj+1 − fj−1

2∆x
= 0

• An upwind flux with piecewise constant basis functions leads to the familiar upwind
difference scheme (for λ > 0)

∂fj
∂t

+ λ
fj − fj−1

∆x
= 0

Solution is advanced in time using a suitable ODE solver, usually strong-stability
preserving Runge-Kutta methods. (See G2 website)

10 / 35 https://ast560.rtfd.io

Example: Piecewise constant basis functions with central flux

Figure: Advection equation solution (black) compared to exact solution (red) with central fluxes
and piecewise constant basis functions.

11 / 35 https://ast560.rtfd.io

Example: Piecewise constant basis functions with upwind flux

Figure: Advection equation solution (black) compared to exact solution (red) with upwind
fluxes and piecewise constant basis functions.

12 / 35 https://ast560.rtfd.io

Passive advection with piecewise linear basis functions

To get better results, we can use piecewise linear polynomials instead. That is, select the basis
functions

ϕ ∈ {1, 2(x − xj)/∆x}

In terms of which the solution in each cell is expanded as fj(x , t) = fj,0 + 2fj,1(x − xj)/∆x .
With this, some algebra shows that we have the update formulas for each stage of a
Runge-Kutta method

f n+1
j,0 = f nj,0 − σ

(
F̂j+1/2 − F̂j−1/2

)
f n+1
j,1 = f nj,1 − 3σ

(
F̂j+1/2 + F̂j−1/2

)
+ 6σfj,0

where σ ≡ λ∆t/∆x . As these are explicit schemes we need to ensure time-step is sufficiently
small. Usually, we need to ensure σ = λ∆t/∆x ≤ 1/(2p + 1).

13 / 35 https://ast560.rtfd.io

Passive advection with piecewise linear basis functions

Figure: Advection equation solution (black) compared to exact solution (red) with upwind
fluxes and piecewise linear basis functions.

In general, with upwind fluxes and linear basis functions numerical diffusion goes like
|λ|∆x3∂4f /∂x4.

14 / 35 https://ast560.rtfd.io

Properties of the discrete equations

From the continuous passive advection equation we can show that, on a periodic
domain the total particles are conserved

d

dt

∫
I
f dx = 0

Also, the L2 norm of the solution is also conserved

d

dt

∫
I

1

2
f 2 dx = 0

We would like to know if our discrete scheme inherits or mimics these properties.
Sometimes, methods in which the discrete scheme inhert important properties from the
continuous equations are called mimetic methods. However, note that in general it is
impossible to inhert all properties and often it is not desirable to do so.

15 / 35 https://ast560.rtfd.io

To prove properties start from discrete weak-form

To understand properties of the scheme we must (obviously) use the discrete weak-form as the starting
point. ∫

Ij

ϕ
∂fh
∂t

dx + λϕj+1/2F̂j+1/2 − λϕj−1/2F̂j−1/2 −
∫
Ij

dϕ

dx
λfh dx = 0.

A general technique is to use a function belonging to the finite-dimensional function space as the test
function ϕ in the discrete weak-form.
Example: consider we set ϕ = 1. Then we get∑

j

∫
Ij

∂fh
∂t

dx + λ
∑
j

(
F̂j+1/2 − F̂j−1/2

)
= 0.

The second term sums to zero and so we have shown that

d

dt

∑
j

∫
Ij

fh dx = 0.

16 / 35 https://ast560.rtfd.io

To prove properties start from discrete weak-form

Now, consider we use the solution itself as the test function. We can do this as the solution, by
definition, belongs to the finite-dimensional function space. We get∑

j

∫
Ij

fh
∂fh
∂t

dx +
∑
j

(
f −hj+1/2F̂j+1/2 − f +hj−1/2F̂j−1/2

)
−
∑
j

∫
Ij

dfh
dx

fh dx = 0

We can write the last term as∑
j

∫
Ij

1

2

d

dx
f 2h dx =

1

2

∑
j

[(
f −hj+1/2

)2
−
(
f +hj−1/2

)2]
If we use upwind fluxes we can show that we get

d

dt

∑
j

∫
Ij

f 2h dx = −
∑
j

(
f −hj+1/2 − f +hj−1/2

)2
≤ 0.

Hence, the L2 norm of the solution will decay and not remain constant. However, this is the desirable
behavior as it ensures L2 stability of the discrete system. With central fluxes the L2 norm is conserved.
(Prove this)

17 / 35 https://ast560.rtfd.io

Summary of DG schemes for passive advection equation

• Pick basis functions. These are usually piecewise polynomials, but could be other
suitable functions.

• Construct discrete weak-form using integration by parts.

• Pick suitable numerical fluxes for the surface integrals.

• Use Runge-Kutta (or other suitable) schemes for evolving the equations in time.

• To prove properties of the scheme, start from the discrete weak-form and use
appropriate test-functions and simplify.

18 / 35 https://ast560.rtfd.io

How to discretize parabolic equations with DG?

• DG is traditionally used to solve hyperbolic PDEs. However, DG is also very good for the solution
of parabolic PDEs.

• One challenge here is that parabolic PDEs have second derivatives and it is not clear at first how a
discontinuous representation can allow solving such systems.

Consider the diffusion equation (subscripts represent derivatives)

ft = fxx

Choose function space and multiply by test function in this space to get weak form∫
Ij

ϕft dx = ϕfx

∣∣∣∣xj+1/2

xj−1/2

−
∫
Ij

ϕx fx dx .

In DG, as f is discontinuous, it is not clear how to compute the derivative across the discontinuity at
the cell interface in the first term. (See SimJ JE16).

19 / 35 https://ast560.rtfd.io

Use weak-equality to recover continuous function

Figure: Given piecewise linear representation (black) we want to recover the continuous function
(red) such that moments of recovered and linear representation are the same in the
respective cells.

20 / 35 https://ast560.rtfd.io

Use weak-equality to recover continuous function

• Consider recovering f̂ on the interval I = [−1, 1], from a function, f , which has a single
discontinuity at x = 0.

• Choose some function spaces PL and PR on the interval IL = [−1, 0] and IR = [0, 1] respectively.

• Reconstruct a continuous function f̂ such that

f̂
.

= fL x ∈ IL on PL

f̂
.

= fR x ∈ IR on PR .

where f = fL for x ∈ IL and f = fR for x ∈ IR .

• To determine f̂ , use the fact that given 2N pieces of information, where N is the number of basis
functions in PL,R , we can construct a polynomial of maximum order 2N − 1. We can hence write

f̂ (x) =
2N−1∑
m=0

f̂mx
m.

Plugging this into the weak-equality relations gives a linear system for f̂m.

21 / 35 https://ast560.rtfd.io

Use recovered function in weak-form

Once we have determined f̂ we can use this in the discrete weak-form of the diffusion
equation: ∫

Ij

ϕft dx = ϕf̂x

∣∣∣∣xj+1/2

xj−1/2

−
∫
Ij

ϕx fx dx .

Note that now as f̂ is continuous at the cell interface there is no issue in computing its
derivative. We can, in fact, do a second integration by parts to get another discrete
weak-form ∫

Ij

ϕft dx = (ϕf̂x − ϕx f̂)

∣∣∣∣xj+1/2

xj−1/2

+

∫
Ij

ϕxx f dx .

This weak-form has certain advantages as the second term does not contain derivatives
(which may be discontinuous at cell boundary).

22 / 35 https://ast560.rtfd.io

Putting everything together: the Vlasov-Maxwell equation

We would like to solve the Vlasov-Maxwell system, treating it as a partial-differential
equation (PDE) in 6D:

∂fs
∂t

+∇x · (vfs) +∇v · (Fs fs) = C [fs]

where Fs = qs/ms(E + v × B). The EM fields are determined from Maxwell equations

∂B

∂t
+∇× E = 0

ε0µ0
∂E

∂t
−∇× B = −µ0J

23 / 35 https://ast560.rtfd.io

Can we solve VM system efficiently, conserve invariants?

We know that the Vlasov-Maxwell system conserves, total number of particles; total
(field + particle) momentum; total (field + particle) energy; other invariants. Can a
numerical scheme be designed that retains (some or all) of these properties?

For understanding solar-wind turbulence and other problems, we would like a noise-free
algorithm that allows studying phase-space cascades correctly, in a noise-free manner.

See Juno et. al JCP 353, 110-147 (2018); Hakim et. al. JPP 86, 905860403 (2020)
for details.

24 / 35 https://ast560.rtfd.io

Time-stepping schemes

In the past few lectures we only discussed how to discretize the spatial terms (FV, DG).
How about time? Typically for hyperbolic problems we use explicit time-stepping
schemes:

• Use a “one step” method in which a Taylor series in time is used to derive a fully
discrete scheme.

• More common: use a special Runge-Kutta time-stepper specially designed for
hyperbolic PDEs, called “Strong Stability Preseving Runge-Kutta” (SSP-RK). If
single forward Euler step preserves monotonicity then so will the SSP-RK scheme.

Write the semi-discrete equation as the system of ODEs

df

dt
= L(f , t).

Note we can write any equation with first-order time-derivatives in this form. (Not just
hyperbolic).

25 / 35 https://ast560.rtfd.io

Strong Stability Preseving Runge-Kutta Schemes

Basic idea is to combine a series of first-order forward Euler steps to march the solution
in time. Write forward Euler as

F [f , t] = f + ∆tL[f , t]

Most common example is SSP-RK3 (third-order in time RK scheme).

f (1) = F [f n, tn]

f (2) =
3

4
f n +

1

4
F
[
f (1), tn + ∆t

]
f n+1 =

1

3
f n +

2

3
F
[
f (2), tn + ∆t/2

]

26 / 35 https://ast560.rtfd.io

Stability Regions of SSP-RK schemes

• Absolute stability regions for a equation
ḟ = (λ+ iω) f for SSP-RK2 (red),
SSP-RK3 (black) and four stage SSP-RK3
(magenta).

• Without diffusion (λ = 0) the SSP-RK2
scheme is mildly unstable as it has no
intercept on the imaginary axis: the third
order schemes should be preferred.

• Notice: intercept on negative real axis
increases rapidly with number of stages;
intercept on imaginary axis also increases:
more stages can lead to schemes with
bigger stability region. See David
Ketcheson thesis.

27 / 35 https://ast560.rtfd.io

Time-scales in a physical system

In typical plasmas the space and time-scales are enormous: plasma- and electron
cyclotron-frequencies; light waves; sound waves, Alfven waves; (all MHD waves);
resistive relaxation; transport scales. It’s an orgy of scales! How to handle all these
scales?

• One option: order out scales you do not care about by deriving asymptotic
equations. Great example: extended MHD; gyrokinetics.

• However, these equations are still multi-scale! Worse, often there is no clean
scale-separation in many interesting problems.

28 / 35 https://ast560.rtfd.io

Time-scales in a model problem

Consider advection-diffusion-reaction-oscillation
equation

∂f

∂t
+ a

∂f

∂x
= ν

∂2f

∂x2
+ iΩf − γf

Here γ ≥ 0 and Ω are real. Consider a single
mode in space-time e−iωte ikx and get
dispersion relation

ω = (ak − Ω)︸ ︷︷ ︸
ω

−i (νk2 + γ)︸ ︷︷ ︸
−λ

For stability of explicit scheme we must choose
ω∆t to lie inside the stability region of the
time-stepping scheme.

29 / 35 https://ast560.rtfd.io

Time-scales in a model problem

For finite-difference schemes kmax = 2/∆x . Hence we have

ω =

(
2a

∆x
− Ω

)
− i

(
4ν

∆x2
+ γ

)
Depending on the regime one or the other term may dominate. For example, Ω may be
very large. Also, in particular, note that the damping from diffusion goes as 1/∆x2.
This can be a serious limitation for explicit schemes.

• To overcome time-step limitation from Ω (oscillations) we need to use some sort of
time-centered implicit method; For stiff γ >> 1 we need an damped implicit
scheme.

• For diffusion dominated problems we can use implicit methods, or, preferably super
time-stepping schemes (STS schemes).

• For advection dominated problems explicit schemes are best. Implicit schemes for
hyperbolic equations are hard and do not always work well.

30 / 35 https://ast560.rtfd.io

“Super-Time Stepping” Schemes

• “Super-Time Stepping” or
Runge-Kutta-Legendre (or
Runge-Kutta-Chebyshev or ROCK2)
schemes work by taking large (10-100s)
of RK stages to increase region of
stability along negative real axis.

• For s stages the stability increases as
s2: hence, for large s we can get an
approximate s× speed up compared to
explicit scheme.

• Note that STS schemes look like
explicit schemes! No need for
complicated linear/nonlinear solvers.

31 / 35 https://ast560.rtfd.io

Time-stepping a complex system of equations

To summarize: to update a complex system of nonlinear equations with hyperbolic,
parabolic, oscillating and reaction terms:

• For advection terms typically use explicit schemes: implicit schemes are hard.
Limited by fastest eigenvalue in the system.

• For oscillating terms use a time-centered implicit scheme (or backward implicit for
fastest oscillations); for reactions use a backward implicit scheme;

• For diffusion (even nonlinear diffusion) use a STS scheme.

In a real problem all these need to be combined using operator splitting approaches.

32 / 35 https://ast560.rtfd.io

How to solve elliptic equations?

Consider the Poisson equation

∇2f = −s

• This is an elliptic equation. The spatial derivatives can be computed in the same
way we did for diffusion equation: integrate over a cell and use symmetric recovery
to compute edge gradients. Ditto if using DG.

• Will lead to a (large) linear system. How to invert this system efficiently?

• Not an easy problem! In real applications matrices are sparse, and can be huge
(millions or billions of unknowns). Often coupled to hyperbolic PDEs like
collisionless Boltzmann equations: Poisson equation needs to be inverted at each
step or even RK stage!

33 / 35 https://ast560.rtfd.io

Consider a direct inversion (LU decomposition)

• For small problems, say O(100) unknowns, one can use standard LU decomposition:
compute L and U once, store them and reuse. Can be very fast.

• However, LU decomposition scales like O(N3), where N is the number of unknowns.

• Consider a 3D problem on a cube with N1 cells per direction. N = N3
1 . Hence,

doubling the number of cells in each direction will increase cost by (23)3 = 512!

• For large problems this cost is unacceptably high.

34 / 35 https://ast560.rtfd.io

Many, many methods invented to solve this issue

• Instead of directly solving this system we can guess a solution and iteratively
improve it: large class of iterative methods have been invented.

• Best methods are the class of multi-grid method. Huge literature on these. Not
trivial to implement, best to use a library if possible.

• Sometimes simpler iterative methods also work well. Second order Richarson
iteration is a good method to use. Belongs to the class of “Chebyshev iteration”
schemes. Physical way to think about these schemes is to convert Poisson equation
to a pseudo-time-dependent problem by adding “time” derivative terms. Then
marrch to steady state.

35 / 35 https://ast560.rtfd.io

