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1 Exact solution to one-dimensional linear hyperbolic system

Consider the one-dimensional system of equations

∂Q

∂t
+
∂F

∂x
= 0 (1)

Where Q(x, t) is a vector of m conserved quantities and F (Q) is the flux function. At first, let us assume
the system is linear and write the flux as

F = AQ (2)

where A is a constant m ×m matrix. We will assume that this system is hyperbolic, i.e. the eigenvalues
of A are real and the eigenvectors are complete. Let λp be the eigenvalues and rp and lp, p = 1, . . . ,m be
the right and left eigenvectors respectively. We will represent right eigenvectors as column vectors, and left
eigenvectors as row vectors.

To solve Eq. (1) we first convert it to a system of uncoupled advection equations by multiplying it from
the left by lp. This gives

∂wp

∂t
+ λp

∂wp

∂x
= 0 (3)

where we have defined the Riemann variables wp = lpQ. Note that given wp we can recompute Q from

Q =
∑
p

wprp. (4)

A useful identity is ∑
p

wpλpr
p =

∑
p

wpArp = A
∑
p

wprp = AQ = F (Q). (5)

Now consider a domain −∞ < x < ∞ and the initial conditions wp0(x) = lpQ0(x). Each advection
equation for the Riemann variables can be solved exactly as

wp(x, t) = wp0(x− λpt) (6)

From this, the exact solution to the linear system can be obtained as

Q(x, t) =
∑
p

wp0(x− λpt)rp =
∑
p

lpQ0(x− λpt)rp. (7)
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Figure 1: Recovery is used to compute left/right values Q±

i+1/2 from a set of cell-averages and are then fed into a numerical flux
function to update the solution.

2 Basic formulation of finite-volume schemes

The finite-volume (FV) scheme for the system Eq. (1) is a method to update the cell-average of the solution
in time. Consider a cell Ij ≡ [xj−1/2, xj+1/2] with uniform cell-spacing ∆x ≡ xj+1/2 − xj−1/2. Integrate
Eq. (1) to get

∂Qj
∂t

+
Fj+1/2 − Fj−1/2

∆x
= 0 (8)

where Qj are cell-average quantities

Qj(t) =
1

∆x

∫
Ij

Q(x, t) dx (9)

and Fj±1/2 = F (Qj±1/2) are the fluxes at the cell-edges xj±1/2. Notice that in effect finite-volume scheme
uses the mean flux gradient in the cell

1

∆x

∫
Ij

∂F

∂x
dx =

Fj+1/2 − Fj−1/2

∆x
. (10)

to update the cell average in time. This is a subtle point and often the cause of misinterpreting the accuracy
or order of a FV scheme.

At this point the discrete expression is exact, but only formally: given the cell-averages we can’t uniquely
determine the edge values Qj±1/2 to insert into the edge fluxes. The FV scheme is an approximation in
which these edge values are recovered (approximately) from the cell-averages and then used in a numerical-
flux to update the cell-average approximation. We can write this as

∂Qj
∂t

+
G(Q+

j+1/2, Q
−
j+1/2)−G(Q+

j−1/2, Q
−
j−1/2)

∆x
= 0 (11)

where G(QL, QR) the numerical-flux function and Q+
j±1/2 and Q−j±1/2 are recovered values just the right

and left of the interface j ± 1/2 respectively (see Fig. 1). For consistency with the exact form Eq. (8) we
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must ensure that the numeric flux is Lipschitz continuous1 and consistent: whenQL = QR thenG(QL, QR)
must reduce to the physical flux function, i.e.

lim
QL,R→Q

G(QL, QR) = F (Q). (12)

Hence, to completely specify a finite-volume scheme we must design algorithms for each of the follow-
ing three steps:

• Step 1: A recovery scheme (possibly with limiters) to compute the left/right interface values QL,R at
each interface using a set of cell-average values around that interface,

• Step 2: A numerical flux function that takes the left/right values and returns a consistent approxima-
tion to the physical flux, and

• Step 3: A time-stepping scheme to advance the solution in time and compute the cell-averages at the
next time-step.

3 First-order upwind scheme for one-dimension linear hyperbolic systems

Let us first consider a linear system in which we use the cell-averages directly as the left/right edge values,
skipping the recovery step completely. This first-order scheme for linear equations will form the basis
for higher-order schemes for nonlinear systems. We will also use a simple forward-Euler time-stepper to
simplify the third-step.

Instead of directly discretizing the coupled system of equations (in which upwind direction may not not
be clear), we can instead solve the linear advection equations for the Riemann variables using an upwind
method and the convert the solution for wp to Q using Eq. (4). We can write a first-order upwind method for
the Riemann variables as

wp,n+1
j = wp,nj −

∆t

∆x

(
Gp(wp,nj+1, w

p,n
j )−Gp(wp,nj , wp,nj−1)

)
(13)

where the numerical flux function for the Riemann variables, Gp(wR, wL), is defined as

Gp(wpR, w
p
L) =

λp
2

(wpR + wpL)− |λp|
2

(wpR − w
p
L). (14)

Note that this choice of flux ensures that if λp > 0 then Gp(wR, wL) = λpwL and if λp < 0 then
Gp(wR, wL) = λpwR, ensuring proper upwinding of the values at cell interfaces.

To convert this to a scheme for Q instead, multiply by rp and sum over p to get

Qn+1
j = Qnj −

∆t

∆x

(
G(Qnj+1, Q

n
j )−G(Qnj , Q

n
j−1)

)
. (15)

The numerical flux G(QR, QL) is computed from

G(QR, QL) =
∑
p

rpGp(wpR, w
p
L) =

1

2

∑
p

λpr
p(wpR + wpL)− 1

2

∑
p

|λp|rp(wpR − w
p
L). (16)

1This is somewhat of a technical restriction which ensures that the derivative of the numerical-flux with each of its independent
variables is bounded.
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We can write the first term, using identity Eq. (5) as (F (QR) + F (QL))/2. To rewrite the second term
introduce

λ+
p = max(λp, 0) (17)

λ−p = min(λp, 0). (18)

Note that in terms of these we can write λp = λ+
p + λ−p and |λp| = λ+

p − λ−p . Using the latter identity the
numerical flux can be written as

G(QR, QL) =
1

2

(
F (QR) + F (QL)

)
− 1

2
(A+∆QR,L −A−∆QR,L) (19)

where the fluctuations A±∆Q are defined as

A±∆QR,L ≡
∑
p

rpλ±p (wpR − w
p
L) =

∑
p

rpλ±p l
p(QR −QL). (20)

The fluctuations satisfy the flux-difference or flux-jump identity

A+∆QR,L +A−∆QR,L =
∑
p

rp (λ+
p + λ−p )︸ ︷︷ ︸
λp

(wpR − w
p
L) = F (QR)− F (QL). (21)

Using this identity, the numerical flux can also be written as

G(QR, QL) = F (QL) +A−∆QR,L = F (QR)−A+∆QR,L. (22)

Using this final identity, the complete first-order update for the linear system can be written entirely in terms
of fluctuations as

Qn+1
j = Qnj −

∆t

∆x

(
A−∆Qj+1/2 +A+∆Qj−1/2

)
. (23)

Note that instead, dividing by ∆t and taking limits as ∆t → 0, this can be written in the semi-discrete or
method-of-lines form

∂Qj
∂t

= − 1

∆x

(
A−∆Qj+1/2 +A+∆Qj−1/2

)
. (24)

This system of ODEs can be solved using, for example, a SSP-RK stepper (See Appendix). Further if the
left/right edge values QL,R used in the fluctuations are recovered (and not merely the cell-average values)
then we will get a spatially high-order scheme.

4 Fourth-order centered scheme

To construct a high-order scheme we need to recover the interface values Q+,−
j±1/2 from neighboring cell

averages. From now on we will drop the indices and use the index-free notation outlined in the Appendix
and focus on recovering edge values using four-cells: two on the left and two on the right. At first we will
also not worry about limiters.

First, consider the four cells {d2m, dm, dp, d2p} (two the left of the interface and two to the right). Given
the four cell averages each of these four cells we can construct a cubic polynomial

p(x) = p0 + p1x+ p2x
2 + p3x

3 (25)
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which we construct by matching its cell average in cells {d2m, dm, dp, d2p} to the known cell-average values
{d2mQ, dmQ, dpQ, d2pQ}. This gives a system of four equations for the four coefficients pi, i = 0, . . . , 3
that yield

p0 =
1

12
(−d2m + 7dm + 7dp − d2p)Q (26)

p1 =
1

12∆x
(d2m − 15dm + 15dp − d2p)Q (27)

p2 =
1

4∆x2
(d2m − dm − dp + d2p)Q (28)

p4 =
1

6∆x3
(d2m − 3dm + 3dp − d2p)Q. (29)

Note that the stencils of the even coefficients are symmetric and the odd coefficients are anti-symmetric.
To compute the interface value we do not really need all of these coefficients but only need to evaluate the
recovery polynomial at x = 0, i.e we only need p(0) = p0. Hence, for this symmetric recovery we have the
interface values

Q+ = Q− =
1

12
(−d2m + 7dm + 7dp − d2p)Q. (30)

In this case of four-cell symmetric recovery the consistency condition shows that the numerical flux function
is simply the physical flux. As we will show this leads to a fourth-order non-dissipative scheme, however, it
is not very robust.

To understand the accuracy of the scheme, consider the advection equation with F (Q) = Q. Plugging
in the interface values computed using the above recovery formula at the left and right interface gives the
complete semi-discrete five-cell stencil update formula

∂Qj
∂t

= − 1

∆x

∫
Ij

∂Q

∂x
dx = −

Qj+1/2 −Qj−1/2

∆x
= − 1

12∆x
(∆2m − 8∆m + 8∆p −∆2p)Qj (31)

where again we have used the index free notation described in the Appendix to express the stencil. A general
procedure to compute the accuracy of the scheme is the following

• Take a Taylor series polynomial around the cell center of cell Ij = [−∆x/2,∆x/2] locally at x = 0

T (x) =
∑
n=0

Tn
n!
xn. (32)

• Compute the cell average of this polynomial on each of the stencil cells, in this case {∆2m,∆m,∆p,∆2p}
• Substitute these averages in the update formula Eq. (31) to compute the mean value of the flux gradient

in the cell Ij = [−∆x/2,∆x/2]

1

12∆x
(∆2m − 8∆m + 8∆p −∆2p)T = T1 +

∆x2

24
T3 −

21∆x4

640
T5 + . . . (33)

• Subtract the exact cell average of the gradient of the Taylor polynomial in cell Ij = [−∆x/2,∆x/2],
i.e.

1

∆x

∫ ∆x/2

−∆x/2

∂T

∂x
dx = T1 +

∆x2

24
T3 +

∆x4

1920
T5 + . . . (34)

from the stencil computed value. The remainder term is the error of the scheme.
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These steps are facilitated by a computer algebra system. For the five-cell stencil above this procedure shows
that the error is

∆x4

30
T5 +O(∆x6) (35)

showing the scheme converges with fourth-order accuracy O(∆x4) for linear advection equation.
Besides the accuracy of the scheme we can also study its diffusion and dispersion properties by looking

at how a single discrete Fourier mode propagates with the scheme. To do this, consider a single mode as

Q(x) = eikx (36)

where k is the wavenumber. We will study how this mode is represented by the discrete scheme in the same
way as the Taylor series analysis above: first we will compute the cell-average of the mode on each of the
cells in the stencil:

Qj =
1

∆x

∫ xj+∆x/2

xj−∆x/2
Q(x) dx =

1

2

∫ 1

−1
Q
(
x(η)

)
dη =

1

2
eikxj

∫ 1

−1
eikη∆x/2 dη (37)

where we have defined η ≡ 2(x − xj)/∆x and xj is the cell-center coordinate. Now, we can write the
generic stencil from different schemes for computing the mean gradient as

1

∆x

∫
Ij

∂Q

∂x
dx =

1

∆x

M∑
m=−N

cmQj+m. (38)

Plugging in Eq. (37) and Eq. (36) into this expression we get the effective wavenumber of the scheme

ik =

M∑
m=−N

cme
ikm∆x. (39)

Notice we have used k instead of k as the wavenumber of the discrete mean gradient computed by the FV
scheme will not be the same as the wavenumber of the mode initialized on the grid. This difference between
the k and k is in effect the numerical dispersion relation of the scheme. In particular, for a hyperbolic
equation linear dispersion relation is of the form ωp = λpk where λp are the eigenvalues of the flux-Jacobian.
The semi-discrete scheme2 however, will instead have the effective dispersion relation ωp = λpk. Ideally,
one would want k = k but this is impossible in the discrete scheme. In fact, all waves in a linear(ized)
hyperbolic system should travel with the same constant phase- and group-velocities, but in the discrete
system this will no longer be true.

Clearly, the discrete wavenumber k plays an important role in understanding the properties of the
scheme. We would like as broad a range of wavenumbers as possible represented accurately. In gen-
eral, long wavelength modes will be better represented than short wavelength modes as we will show below.
Also, notice from Eq. (39) that k could potentially be complex even though k is real. Clearly, for stability
the imaginary part of k must be negative or else the solution will blow up in time.

For the five-cell stencil Eq. (31) as the coefficients satisfy cm = −c−m the discrete wavenumber is real,
that is it has no numerical diffusion. For long wavelength modes this is perfectly fine, but for shorter wave-
length modes the numerical dispersion from the discretization won’t be damped out, leading to numerical

2Additional errors will be introduced with the time-discretization which we will ignore for the present.
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Figure 2: Numerical dispersion relation (red) for the five-cell stencil Eq. (31). For low-k modes (long wavelength) the numerical
wavenumber is close to the actual wavenumber (blue) but there is significant dispersion for higher-k modes.

issues whenever sharp gradients are formed in the solution. Note that for hyperbolic problems, in general,
such sharp gradients will almost always form even if the initial conditions are smooth. For the five-cell
stencil we can derive

k∆x =
4

3
sin(k∆x)− 1

6
sin(2k∆x). (40)

A plot of this numerical dispersion relation is shown in Fig. 2. From this figure it is seen that the numer-
ical wavenumber matches the actual wavenumber for k∆x < 1 (i.e. a mode needs to be represented by
at least six-cells to propagate correctly) but shows significant errors for higher-k modes. In fact, this nu-
merical dispersion relation shows that higher-k modes will suffer significant dispersion, in that the group-
and phase-velocities will differ considerably for short wavelength modes. Note that this issue is particularly
problematic for turbulence calculations in which the energy cascades down to higher-k modes just where the
numerics become problematic. Typically, using an even higher-order (wider) recovery stencil will improve
the dispersion charactertics of the scheme at a higher computational (and in parallel, communication) cost.
Wider stencils also allow optimizing the scheme to reduce the dispersion of high-k modes (in exchange for
reduced accuracy) as shown later in this document.

A Strong-Stability preserving Runge-Kutta time-steppers

To update the equations in time we use a strong-stability preserving Runge-Kutta (SSP-RK) scheme. These
schemes are ensure that if the basic first-order forward Euler time-stepper maintains monotonicity or pos-
itivity so does the higher-order RK scheme. To update the equations we first construct a method to take a
single first-order Euler step as follows:

F [Q, t] = Q+ ∆tL[Q, t] (41)

WhereL[Q, t] is the RHS of the equation (discretized FV scheme). In terms of this, the most popular scheme
is the third-order SSP-RK scheme written as follows:
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Figure 3: Basic indexing operators to move from cell to cell, face to cell and cell to face. These can be combined with each other,
with transverse operators and directional modifiers to express stencils in a compact and dimensionally independent manner.

Q(1) = F [Qn, tn] (42)

Q(2) =
3

4
Qn +

1

4
F [Q(1), tn + ∆t] (43)

Qn+1 =
1

3
Qn +

2

3
F [Q(2), tn + ∆t/2] (44)

with time-step maxp λp∆t/∆x ≤ 1.

B Dimensionally independent grid indexing

To allow dimensionally independent grid indexing we will introduce the following operators (see Fig. 3)

• ∆p and ∆m work on cell indices and shift to the right and left cell index respectively.

• dp and dm work on edge indices and shift it to the right and left full index respectively.

• ep and em work on cell indices and shift it to the right and left edge index respectively.
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